Rogue Waves of the Kundu-DNLS Equation

Abstract

In this paper, we give the Lax pair and construct the Darboux transformation of the Kundu-DNLS equation. Furthermore, the rogue wave solutions of the Kundu-DNLS equation are derived by using the Taylor expansion of the breather solution. What's more, the triangular and the circular patterns of the third rouge solution are displayed.

Share and Cite:

S. Shan, C. Li and J. He, "Rogue Waves of the Kundu-DNLS Equation," Open Journal of Applied Sciences, Vol. 3 No. 1B, 2013, pp. 99-101. doi: 10.4236/ojapps.2013.31B1020.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. S. Johnson, “On the Modulation of Water Waves in the Neighbourhood of kh 1.363,”Proceedings of the Royal Society A, Vol. 357, No. 1689,1977, pp. 131-141. doi:10.1098/rspa.1977.0159
[2] S. W. Xu, J. S. He and L. H. Wang, “The Darboux Transformation of the Derivative Nonlinear Schrodinger Equation,” Journal of Physics A: Mathematical and Theoretical, Vol. 44, No. 30, 2011, p. 305203. doi:10.1088/1751-8113/44/30/305203
[3] A. Kundu, “Integrable Hierarchy of Higher Nonlinear Schrodinger Type Equations, Symmetry, Integrability and Geometry,” Methods and Applications, Vol. 2, No. 12, 2006.
[4] A. Kundu, “Landau-Lifshitz and Higher-Order Nonlinear Systems Gauge Generated from Nonlinear schr\"{o}dinger Type Equations,” Jour-nal of Mathematical Physics, Vol. 25, No. 12,1984, p. 3433. doi:10.1063/1.526113
[5] G. Tan\v{o}glu, “Hirota Method for Solving Reaction-Diffusion Equations with Generalized Nonlinearity,” International Journal of Nonlinear Science, Vol. 1,2006, pp. 30-36.
[6] M. J. Ablowitz and P. A. Clarkson and Solitons, “Nonlinear Evolution Equations and Inverse Scattering,” Journal of Fluid Mechanics, Vol. 244, 1992, pp.721-725.
[7] S. Kakei, N. Sasa and J. Satsuma, “Bilinearization of a Generalized Derivative Nonlinear schr\"{o}dinger Equation,” Journal of the Physical Society of Japan, Vol. 64, 1995, pp.1519-1523. doi:10.1143/JPSJ.64.1519
[8] J. S. He, L. Zhang, Y. Cheng and Y. S. Li, “Determinant representation of Darboux transformation for the AKNS System,” Science in China Series A: Mathematics, Vol. 49, No. 12, 2006, pp. 1867-1878. doi:10.1007/s11425-006-2025-1
[9] C. Z. Li, J. S. He and K. Porsezian, “Rogue Waves of the Hirota and the Maxwell-Bloch Equation,” Physical Review E, Vol. 87, 2013, p. 012913. doi:10.1103/PhysRevE.87.012913
[10] J. S. He, H. R. Zhang, L. H. Wang, K. Porsezian and A. S. Fokas, “A Generating Mechanism for Higher Order Rogue Waves”.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.