Bifidobacteria Upregulate Expression of Toll-Like Receptor Negative Regulators Counteracting Enterotoxigenic Escherichia coli Mediated Inflammation in Bovine Intestinal Epitheliocytes


We previously established a bovine intestinal epithelial cell line (BIE cells) and showed that BIE cells are useful in vitro model system for the study of interactions between pathogenic and beneficial microorganisms and bovine intestinal epithelial cells (IECs). In the present study, we aimed to select potential immunomodulatory bifidobacteria that may be used to beneficially modulate the inflammatory response in bovine IECs. We also aimed to gain insight into the molecular mechanisms involved in the anti-inflammatory effect of bifidobacteria by evaluating the role of Toll-like receptor (TLR)-2 and TLR negative regulators in the regulation of proinflammatory cytokines production and MAPK, NF-κB and PI3K pathways activation in BIE cells. Five bifidobacteria strains were evaluated in this study and according to their capacity to modulate the inflammatory response of BIE cells. Despite the unique effect of each strain, four common points were found when comparing the effect of the high and moderate anti-inflammatory strains: 1) Upregulation of TLR negative regulators and the intensity of that upregulation was related to the different immunomodulatory capacity of each bifidobacteria strain; 2) The balance between MAPK activation and MKP-1 upregulation affected the anti-inflammatory effect of bifidobacteria in BIE cells; 3) The inhibition of PI3K pathway was related to the anti-inflammatory effect of bifidobacteria; 4) The immunoregulatory effect of bifidobacteria in BIE cells is partially dependent on TLR2. This study shows that BIE cells can be used for the selection of immunoregulatory bifidobacteria and for studying the mechanisms involved in the protective activity of immunobiotics against TLR4-induced inflammatory damage. In addition, we have demonstrated that the anti-inflammatory effect of bifidobacteria was achieved by a complex interaction of multiple TLRs negative regulators as well as the inhibition/activation of multiple signaling pathways.

Share and Cite:

K. Murata, J. Villena, Y. Tomosada, R. Hara, E. Chiba, T. Shimazu, H. Aso, Y. Suda, N. Iwabuchi, J. Xiao, T. Saito and H. Kitazawa, "Bifidobacteria Upregulate Expression of Toll-Like Receptor Negative Regulators Counteracting Enterotoxigenic Escherichia coli Mediated Inflammation in Bovine Intestinal Epitheliocytes," Open Journal of Veterinary Medicine, Vol. 3 No. 2, 2013, pp. 143-155. doi: 10.4236/ojvm.2013.32023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Roselli, A. Finamore, M. S. Britti, S. R. Konstantinov, H. Smidt, W. M. de Vos and E. Mengheri, “The Novel Porcine Lactobacillus Sobrius Strain Protects Intestinal Cells from Enterotoxigenic Escherichia coli K88 Infection and Prevents Membrane Barrier Damage,” Journal of Nutrition, Vol. 137, No. 12, 2007, pp. 2709-2716.
[2] M., Roselli, A., Finamore, M. S. Britti and E. Mengheri, “Probiotic Bacteria Bifidobacterium Animalis MB5 and Lactobacillus rhamnosus GG Protect Intestinal Caco-2 Cells from the Inflammation-Associated Response Induced by Enterotoxigenic Escherichia coli K88,” British Journal of Nutrion, Vol. 95, 2006, pp. 1177-1184. doi:10.1079/BJN20051681
[3] G., Zanello, F. Meurens, M. Berri, C. Chevaleyre, S. Melo, E. Auclair and H. Salmon, “Saccharomyces Cerevisiae Decreases Inflammatory Responses Induced by F4+ Enterotoxigenic Escherichia coli in Porcine Intestinal Epithelial Cells,” Veterinary Immunology and Immunopathology, Vol. 141, No. 1-2, 2011, pp. 133-138. doi:10.1016/j.vetimm.2011.01.018
[4] G. Zanello, M. Berri, J. Dupont, P. Y. Sizaret, R. D’Inca, H. Salmon and F. Meurens, “Saccharomyces cerevisiae Modulates Immune Gene Expressions and Inhibits ETEC-Mediated ERK1/2 and p38 Signaling Pathways in Intestinal Epithelial Cells,” PLoS One, Vol. 6, No. 4, 2011, Article ID: e18573. doi:10.1371/journal.pone.0018573
[5] D. O’Mahony, S. Murphy, T. Boileau, J. Park, F. O’Brien, G. Groeger, P. Konieczna, M. Ziegler, P. Scully, F. Shanahan, B. Kiely and L. O’Mahony, “Bifidobacterium animalis AHC7 Protects against Pathogen-Induced NF-κB Activation in vivo,” BMC Immunology, Vol. 11, 2010, p. 63. doi:10.1186/1471-2172-11-63
[6] C. Hoarau, L. Martin, D. Faugaret, C. Baron, A. Dauba, C. Aubert-Jacquin, F. Velge-Roussel and Y. Lebranchu, “Supernatant from Bifidobacterium Differentially Modulates Transduction Signaling Pathways for Biological Functions of Human Dendritic Cells,” PLoS One, Vol. 3, No. 7, 2008, Article ID: e2753. doi:10.1371/journal.pone.0002753
[7] F. Gaggìa, P. Mattarelli and B. Biavati, “Probiotics and Prebiotics in Animal Feeding for Safe Food Production,” International Journal of Food Microbiology, Vol. 141, 2010, pp. S15-S28. doi:10.1016/j.ijfoodmicro.2010.02.031
[8] J. Villena, H. Aso, S. Alvarez and H. Kitazawa, “Porcine Toll-Like Receptors and Their Crosstalk with Immunobiotics: Impact in the Regulation of Gut Inflammatory Immunity,” Probiotics: Sources, Types and Health Benefits, NOVA Science Publishers, Inc., New York, 2012, pp. 53-84.
[9] K. Miyazawa, T. Hondo, T. Kanaya, S. Tanaka, I. Takakura, W. Itani, M. T. Rose, H. Kitazawa, T. Yamaguchi and H. Aso, “Characterization of Newly Established Bovine Intestinal Epithelial Cell Line,” Histochemical Cell Biology, Vol. 133, No. 1, 2010, pp. 125-134. doi:10.1007/s00418-009-0648-3
[10] E. Chiba, J. Villena, S. Hosoya, N. Takanashi, T. Shimazu, H. Aso, M. Tohno, Y. Suda, Y. Kawai, T. Saito, K. Miyazawa, F. He and H. Kitazawa, “A Newly Established Bovine Intestinal Epithelial Cell Line Is Effective for in Vitro Screening of Potential Antiviral Immunobiotic Microorganisms for Cattle,” Research in Veterinary Science, Vol. 93, No. 2, 2012, pp. 688-694. doi:10.1016/j.rvsc.2011.10.002
[11] J. Berkes, V. K. Viswanathan, S. D. Savkovic and G. Hecht, “Intestinal Epithelial Responses to Enteric Pathogens: Effects on the Tight Junction Barrier, Ion Transport, and Inflammation,” Gut, Vol. 52, 2003, pp. 439-451. doi:10.1136/gut.52.3.439
[12] H. Fujie, J. Villena, M. Tohno, K. Morie, T. Shimazu, H. Aso, Y. Suda, N. Iwabuchi, J. Xiao, K. Iwatsuki, Y. Kawai, T. Saito and H. Kitazawa, “Toll-Like Receptor-2 Activating Bifidobacteria Strains Differentially Regulate Inflammatory Cytokines in Porcine Intestinal Epithelial Cell Culture System: Finding New Anti-Inflammatory Immunobiotics,” FEMS Immunology and Medical Microbiology, Vol. 63, No. 1, 2011, pp. 129-139. doi:10.1111/j.1574-695X.2011.00837.x
[13] J. Villena, R. Suzuki, H. Fujie, E. Chiba, T. Takahashi, T. Shimazu, H. Aso, S. Ohwada, Y. Suda, S. Ikegami, H. Itoh, S. Alvarez, T. Saito and H. Kitazawa, “Immunobiotic Lactobacillus jensenii Modulates Toll-Like Receptor 4-Induced Inflammatory Response via Negative Regulation in Porcine Antigen Presenting Cells,” Clinical and Vaccine Immunology, Vol. 19, No. 7, 2012, pp. 1038-1053. doi:10.1128/CVI.00199-12
[14] T. Yamamoto and M. Nakazawa, “Detection and Sequences of the Enteroaggregative Escherichia coli Heat-Killed Enterotoxin 1 Gene in Enterotoxigenic E. coli Strains Isolated from Piglets and Calves with Diarrhea,” Journal of Clinical Microbiology, Vol. 35, No. 1, 1997, pp. 223-227.
[15] N. C. Maldonado, C. Silva de Ruiz, M. C. Otero, F. Sesma and M. E. Nader-Macías, “Lactic Acid Bacteria Isolated from Young Calves—Characterization and Potential as Probiotics,” Research in Veterinary Science, Vol. 92, No. 2, 2012, pp. 342-349. doi:10.1016/j.rvsc.2011.03.017
[16] M. Tohno, T. Shimosato, Y. Kawai, H. Aso, S. Ikegami, N. Takemoto, T. Saito and H. Kitazawa, “Advanced Molecular Immunoassay System for Immunobiotic Lactic Acid Bacteria Using a Transfectant of Toll-Like Receptor 2,” Animal Science Journal, Vol. 78, No. 2, 2007, pp. 195-201. doi:10.1111/j.1740-0929.2007.00425.x
[17] H. Kitazawa, M. Tohno, T. Shimosato and T. Saito, “Development of Molecular Immunoassay System for Probiotics via Toll-Like Receptors Based on Food Immunology,” Animal Science Journal, Vol. 79, No. 1, 2008, pp. 11-21. doi:10.1111/j.1740-0929.2007.00491.x-i1
[18] P. López, M. Gueimonde, A. Margolles and A. Suárez, “Distinct Bifidobacterium Strains Drive Different Immune Responses in Vitro,” International Journal of Food Microbiology, Vol. 138, No. 1-2, 2010, pp. 157-165. doi:10.1016/j.ijfoodmicro.2009.12.023
[19] J. D. Lee, J. H. Mo, C. Shen, A. N. Rucker and E. Raz, “Toll-Like Receptor Signaling in Intestinal Epithelial Cells Contributes to Colonic Homoeostasis,” Current Opinion in Gastroenterology, Vol. 23, No. 1, 2007, pp. 27-33. doi:10.1097/MOG.0b013e3280118272
[20] T. Shimazu, J. Villena, M. Tohno, H. Fujie, S. Hosoya, T. Shimosato, H. Aso, Y. Suda, Y. Kawai, T. Saito, S. Makino, S. Ikegami, H. Itoh and H. Kitazawa, “Immunobiotic Lactobacillus jensenii Elicit Anti-Inflammatory Activity in Porcine Intestinal Epithelial Cells by Modulating Negative Regulators of the Toll-Like Receptor Signaling Pathway,” Infection and Immunity, Vol. 80, No. 1, 2012, pp. 276-288. doi:10.1128/IAI.05729-11
[21] L. Vereecke, M. Sze, C. Mc Guire, B. Rogiers, Y. Chu, M. Schmidt-Supprian, M. Pasparakis, R. Beyaert and G. van Loo, “Enterocyte-Specific A20 Deficiency Sensitizes to Tumor Necrosis Factor-Induced Toxicity and Experimental Colitis,” Journal of Experimental Medicine, Vol. 207, 2010, pp. 1513-1523. doi:10.1084/jem.20092474
[22] O. Shibolet and D. K. Podolsky, “TLRs in the Gut. IV. Negative Regulation of Toll-Like Receptors and Intestinal Homeostasis: Addition by Subtraction,” American Journal of Physiology Gastrointestestinal and Liver Physiology, Vol. 292, No. 6, 2007, pp. G1469-G1473. doi:10.1152/ajpgi.00531.2006
[23] L. Verstrepen, I. Carpentier, K. Verhelst and R. Beyaert, “ABINs: A20 Binding Inhibitors of NF-Kappa B and Apoptosis Signaling,” Biochemical Pharmacology, Vol. 78, No. 2, 2009, pp. 105-114. doi:10.1016/j.bcp.2009.02.009
[24] J. Wessells, M. Baer, H. A. Young, E. Claudio, K. Brown, U. Siebenlist and P. F. Johnson, “BCL-3 and NF-Kappa B p50 Attenuate Lipopolysaccharide-Induced Inflammatory Responses in Macrophages,” Journal of Biological Chemistry, Vol. 279, 2004, pp. 49995-50003. doi:10.1074/jbc.M404246200
[25] H. Kuwata, Y. Watanabe, H. Miyoshi, M. Yamamoto, T. Kaisho, K. Takeda and S. Akira, “IL-10-Inducible Bcl-3 Negatively Regulates LPS-Induced TNF-Alpha Production in Macrophages,” Blood, Vol. 102, No. 12, 2003, pp. 4123-4129. doi:10.1182/blood-2003-04-1228
[26] H. Xiao, M. F. Gulen, J. Qin, J. Yao, K. Bulek, D. Kish, C. Z. Altuntas, D. Wald, C. Ma, H. Zhou, V. K. Tuohy, R. L. Fairchild, C. de la Motte, D. Cua, B. A. Vallance and X. Li, “The Toll-Interleukin-1 Receptor Member SIGIRR Regulates Colonic Epithelial Homeostasis, Inflammation, and Tumorigenesis,” Immunity, Vol. 26, 2007, pp. 461-475. doi:10.1016/j.immuni.2007.02.012
[27] N. Oshima, S. Ishihara, M. A. Rumi, M. M. Aziz, Y. Mishima, C. Kadota, I. Moriyama, N. Ishimura, Y. Amano and Y. Kinoshita, “A20 Is an Early Responding Negative Regulator of Toll-Like Receptor 5 Signalling in Intestinal Epithelial Cells during Inflammation,” Clinical and Experimental Immunology, Vol. 159, No. 2, 2010, pp. 185-198. doi:10.1111/j.1365-2249.2009.04048.x
[28] Y. Sugi, K. Takahashi, K. Nakano, A. Hosono and S. Kaminogawa, “Transcription of the Tollip Gene Is Elevated in Intestinal Epithelial Cells through Impaired O-GlcNAcylation-Dependent Nuclear Translocation of the Negative Regulator Elf-1,” Biochemical and Biophysical Research Communications, Vol. 412, No. 4, 2011, pp. 704-709. doi:10.1016/j.bbrc.2011.08.035
[29] Q. Zhao, X. Wang, L. D. Nelin, Y. Yao, R. Matta, M. E. Manson, R. S. Baliga, X. Meng, C. V. Smith and J. A. Bauer, “MAP Kinase Phosphatase 1 Controls Innate Immune Responses and Suppresses Endotoxic Shock,” Journal of Experimental Medicine, Vol. 203, No. 1, 2006, pp. 131-140. doi:10.1084/jem.20051794
[30] J. Wang, H. R., Ford and A. V. Grishin, “NF-Kappa B-Mediated Expression of MAPK Phosphatase-1 Is an Early Step in Desensitization to TLR Ligands in Enterocytes,” Mucosal Immunology, Vol. 3, 2010, pp. 523-534. doi:10.1038/mi.2010.35
[31] M. Kohno and J. Pouyssegur, “Targeting the ERK Signaling Pathway in Cancer Therapy,” Annals of Medicine, Vol. 38, No. 3, 2006, pp. 200-211. doi:10.1080/07853890600551037
[32] M. T. Hartsough and K. M. Mulder, “Transforming Growth Factor Beta Activation of p44MAPK in Proliferating Cultures of Epithelial Cells,” Journal of Biological Chemestry, Vol. 270, 1995, pp. 7117-7124. doi:10.1074/jbc.270.13.7117
[33] Y. Mamane, E. Petroulakis, O. LeBacquer and N. Sonenberg, “mTOR, Translation Initiation and Cancer,” Oncogene, Vol. 25, 2006, pp. 6416-6422. doi:10.1038/sj.onc.1209888
[34] F. Blanchette, N. Rivard, P. Rudd, F. Grondin, L. Attisano and C. M. Dubois, “Cross-Talk between the p42/p44 MAP Kinase and Smad Pathways in Transforming Growth Factor Beta 1-Induced Furin Gene Transactivation,” Journal of Biological Chemestry, Vol. 276, 2001, pp. 33986-33994. doi:10.1074/jbc.M100093200
[35] L. Arbibe, J. P. Mira, N. Teusch, L. Kline, M. Guha and N. Mackman, “Toll-Like Receptor 2-Mediated NF-Kappa B Activation Requires a Rac1-Dependent Pathway,” Nature Immunology, Vol. 1, 2000, pp. 533-540. doi:10.1038/82797
[36] T. Fukao, M. Tanabe, Y. Terauchi, T. Ota, S. Matsuda and T. Asano, “PI3K-Mediated Negative Feedback Regulation of IL-12 Production in DCs,” Nature Immunology, Vol. 3, 2002, pp. 875-881. doi:10.1038/ni825
[37] Y. Yu, S. Nagai, H. Wu, A. S. Neish, S. Koyasu and A. T. Gewirtz, “TLR5-Mediated Phosphoinositide 3-Kinase Activation Negatively Regulates Flagellin-Induced Proinflammatory Gene Expression,” Journal of Immunology, Vol. 176, No. 10, 2006, pp. 6194-6201.
[38] J. M. Otte and D. K. Podolsky, “Functional Modulation of Enterocytes by Gram-Positive and Gram-Negative Microorganisms,” American Journal of Physiology Gastrointestinal and Liver Physiology, Vol. 286, No. 4, 2004, pp. G613-G626. doi:10.1152/ajpgi.00341.2003
[39] L. H. Zeuthen, L. N. Fink and H. Frokiaer, “Toll-Like Receptor 2 and Nucleotide-Binding Oligomerization Domain-2 Play Divergent Roles in the Recognition of Gut-Derived Lactobacilli and Bifidobacteria in Dendritic Cells,” Immunology, Vol. 124, No. 4, 2008, pp. 489-495. doi:10.1111/j.1365-2567.2007.02800.x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.