Estimation of overall heat transfer coefficient of cooling system in RF capacitive hyperthermia


The study presented in this article involves the estimation of the overall heat transfer coefficient of cooling system in RF capacitive hyperthermia treatment using inverse problem based on the conjugate gradient method to provide improved distribution of temperature. The temperature data computed numerically from the direct problem using the finite difference time domain method are used to simulate the temperature measurements. The effects of the errors and sensor positions upon the precision of the estimated results are also considered. The results show that a reasonable estimation of the unknown can be obtained. Finally, measurements in a tissue-equivalent phantom are employed to appraise the reliability of the presented method. The comparison of computed data with measurements shows a good agreement between numerical and experimental results.

Share and Cite:

Aghayan, S. , Sardari, D. , Mahdavi, S. and Zahmatkesh, M. (2013) Estimation of overall heat transfer coefficient of cooling system in RF capacitive hyperthermia. Journal of Biomedical Science and Engineering, 6, 509-517. doi: 10.4236/jbise.2013.65065.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Wust, P., et al. (2002) Hyperthermia in combined treatment of cancer. The LANCET Oncology, 3, 487-497. doi:10.1016/S1470-2045(02)00818-5
[2] Lee, E.R., Kapp, D.S., Lohrbach, A.W. and Sokol, J.L. (1994) Influence of water bolus temperature on measured skin surface and intra thermal temperatures. International Journal of Hyperthermia, 10, 59-72. doi:10.3109/02656739409009332
[3] De Bruijne, M., Samras, T., Bakker, J.F. and Rhoon, G.C. (2006) Effects of water bolus size, shape and configuration on the SAR distribution pattern of the Lucite cone applicator. International Journal of Hyperthermia, 22, 1528. doi:10.1080/02656730500384297
[4] Griffithsh, H., Ahmed, A. and Smith, C.W. (1984) Power loss in skin cooling pillows during RF hyperthermia. British Journal of Radiology, 57, 254-256. doi:10.1259/0007-1285-57-675-254
[5] Reddy, N.M.S., Balakrishnan, I.S., Bhaskar, B.K., Krishnamurthi, S. and Shanta, V. (1986) Optimization of power deposition and the rate of heating of tissue during RF capacitive hyperthermia. International Journal of Hyperthermia, 2, 321-323. doi:10.3109/02656738609016489
[6] Reddy, N.M.S., Shanta, V. and Krishnamurthi, S. (1986) On minimization of toxicity to skin during capacitive radiofrequency hyperthermia. British Journal of Radiology, 9, 1129-1131. doi:10.1259/0007-1285-59-707-1129
[7] Neuman, D.G., Stauffer, P.R., Jacobsen, S. and Rossetto, F. (2002) SAR pattern perturbations from resonance effects in water bolus layers used with superficial microwave hyperthermia applicators. International Journal of Hyperthermia, 18, 180-193. doi:10.1080/02656730110119198
[8] Sherar, M.D., et al. (1993) Beam shaping for microwave waveguide hyperthermia applicators. International Journal of Radiation Oncology Biology Physics, 25, 849-857. doi:10.1016/0360-3016(93)90315-M
[9] Kumaradas, J.C. and Sherar, M.D. (2003) Optimization of a beam shaping bolus for superficial microwave hyperthermia waveguide applicators using a finite element method. Physics in Medicine and Biology, 48, 1-18. doi:10.1088/0031-9155/48/1/301
[10] Ebrahimi-Ganjeh, M.A. and Attari, A.R. (2008) Study of water bolus effect on SAR penetration depth and effective field size for local hyperthermia. Progress in Electromagnetic Research B, 4, 273-283. doi:10.2528/PIERB08011403
[11] Huang, C.H. and Wang, S.P. (1999) A three dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method. International Journal of Heat and Mass Transfer, 42, 3387-3403. doi:10.1016/S0017-9310(99)00020-4
[12] Dhar, P.K. and Sinha, D.K. (1988) Temperature control of tissue by transient-induced microwave. International Journal of Systems Science, 19, 2051-2055. doi:10.1080/00207728808964097
[13] Loulou, T. and Scott, E.P. (2002) Thermal dose optimization in hyperthermia treatments by using the conjugate gradient method. Numerical Heat Transfer, Part A: Applications, 42, 661-683. doi:10.1080/10407780290059756
[14] Loulou, T. and Scott, E.P. (2006) An inverse heat conduction problem with heat flux measurements. International Journal for Numerical Methods in Engineering, 67, 1587-1616. doi:10.1002/nme.1674
[15] Pennes, H.H. (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1, 93-122.
[16] Holman, J. P. (2002) Heat transfer. 9th Edition, McGraw Hill, New York.
[17] Ozisik, M.N. and Orlande, H.R.B. (2000) Inverse heat transfer fundamentals and applications. Taylor & Francis, New York.
[18] Kato, H. and Ishida, T. (1987) Development of agar phantom adaptable for simulation of various tissues in the range 5 40 MHz (Hyperthermia treatment of cancer). Physics in Medicine and Biology, 72, 221-226. doi:10.1088/0031-9155/32/2/006

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.