Cancer induction pathways and HF-EMF irradiation


The response of cells to different types of electromagnetic fields can be induced by low-level (athermal) high frequency (HF) electromagnetic field (EMF) exposure associated with mobile phone technologies. There are many examples of biological effects involving the epigenome. EMF could trigger protein activation mediated by ligands, such as Ca2+, that alter the conformation of binding proteins, especially the NADPH plasmic membrane oxidase, so inducing increased formation of reactive oxygen species (ROS) that may alter proteomic functions. Classical antiapoptotic and procarcinogenic signaling mechanisms that are commonly found activated in human malignancies and in inflammation mainly involve the transcription factor NF-κB. The microenvironment that exists during chronic inflammation can contribute to cancer progression. The data support the proposition that long term HF-EMF exposure caused by improper use of cell phones may potentially cause cancer.

Share and Cite:

Ledoigt, G. and Belpomme, D. (2013) Cancer induction pathways and HF-EMF irradiation. Advances in Biological Chemistry, 3, 177-186. doi: 10.4236/abc.2013.32023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Roux, D., Vian, A., Girard, S., Bonnet, P., Paladian, F., Davies, E. and Ledoigt, G. (2006) Electromagnetic fields (900 MHz) evoke consistent molecular responses in tomato plants. Physiologia Plantarum, 128, 283-288. doi:10.1111/j.1399-3054.2006.00740.x
[2] Hardell, L., Carlberg, M., Soderqvist, F., Mild, K.H. and Morgan, L.L. (2007) Longterm use of cellular phones and brain tumors: Increased risk associated with use for ≥10 years. Occupational and Environmental Medicine, 64, 626-632. doi:10.1136/oem.2006.029751
[3] Mousavy, S.J., Riazi, G.H., Kamarei, M., Aliakbarian, H., Sattarahmady, N., Sharifizadeh, A., Safarian, S., Ahmad, F. and Moosavi-Movahedi, A.A. (2009) Effects of mobile phone radiofrequency on the structure and function of the normal Human Hemoglobin. International Journal of Biological Macromolecules, 44, 278-285. doi:10.1016/j.ijbiomac.2009.01.001
[4] Belpomme, D., Irigaray, P., Hardell, L., Clapp, R., Montagnier, L., Epstein, S. and Sasco, A.J. (2007) The multitude and diversity of environmental carcinogens. Environmental Research, 105, 414-429. doi:10.1016/j.envres.2007.07.002
[5] McCarrey, J.R. (2012) The epigenome as a target for heritable environmental disruptions of cellular function. Molecular and Cellular Endocrinology, 354, 9-15. doi:10.1016/j.mce.2011.09.014
[6] Hardell, L. and Sage, C. (2008) Biological effects from electromagnetic field exposure and public exposure standards. Biomedicine & Pharmacotherapy, 62, 104-109. doi:10.1016/j.biopha.2007.12.004
[7] Mantovani, A., Allavena, P., Sica, A. and Balkwill, F. (2008) Cancer-related inflammation. Nature, 454, 436444. doi:10.1038/nature07205
[8] Bollrath, J. and Greten, F.R. (2009) IKK/NF and STAT3 pathways: Central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Report, 10, 1314-1319. doi:10.1038/embor.2009.243
[9] Hernandez, M., Martin, R., Garcia-Cubillas, M.D., Maeso-Hernandez, P. and Nieto, M.L. (2010) Secreted PLA2 induces proliferation in astrocytoma through the EGF receptor: Another inflammation-cancer link. Neuro-Oncology, 12, 1014-1023. doi:10.1093/neuonc/noq078
[10] Kandulski, A. and Malfertheiner, P. (2012) Gastroesophageal reflux disease—From reflux episodes to mucosal inflammation. Nature Reviews Gastroenterology & Hepatology, 9, 15-22.
[11] Milham, S. (2009) Most cancer in firefighters is due to radio-frequency radiation exposure not inhaled carcinogens. Medical Hypotheses, 73, 788-789. doi:10.1016/j.mehy.2009.04.020
[12] Schoemaker, M.J., Swerdlow, A.J., Ahlbom, A., Auvinen, A., Blaasaas, K.G., Cardis, E., Christensen, H.C., Hepworth, S.J., Feychting, M., Johansen, C., Klaeboe, L., Lönn, S., McKinney, P.A., Muir, K., Raitanen, J., Salminen, T., Thomsen, J. and Tynes, T. (2005) Mobile phone use and risk of acoustic neuroma: Results of the Interphone case-control study in five North European countries. British Journal of Cancer, 93, 842-848. doi:10.1038/sj.bjc.6602764
[13] Lahkola, A., Salminen, T. and Auvinen, A. (2005) Selection bias due to differential participation in a case-control study of mobile phone use and brain tumors. Annals of Epidemiology, 15, 321-325. doi:10.1016/j.annepidem.2004.12.009
[14] Sadetzki, S., Chetrit, A., Jarus-Hakak, A., Cardis, E., Deutch, Y., Duvdevani, S., Zultan, A., Novikov, I., Freedman, L. and Wolf, M. (2008) Cellphone use and risk of benign and malignant parotid gland tumors—A nationwide case-control study. American Journal of Epidemiology, 167, 457-467. doi:10.1093/aje/kwm325
[15] Belpomme, D., Irigaray, P. and Hardell, L. (2008) Electromagnetic fields as cancer-causing agents. Environmental Research, 107, 289-290. doi:10.1016/j.envres.2008.01.017
[16] Lai, H. and Singh, N.P. (2004) Magnetic-field-induced DNA strand break in brain cells of the rat. Environmental Health Perspectives, 112, 687-694. doi:10.1289/ehp.6355
[17] Tkalec, M., Malaric, K. and Pevalek-Kozlina, B. (2005) Influence of 400, 900, and 1900 MHz electromagnetic fields on Lemna minor growth and peroxidase activity. Bioelectromagnetics, 26, 185-193. doi:10.1002/bem.20104
[18] Roux, D., Vian, A., Girard, S., Bonnet, P., Paladian, F., Davies, E. and Ledoigt G. (2008) High frequency (900 MHz) low amplitude (5 V·m-1) electromagnetic field: A genuine environmental stimulus that affects transcription, translation, calcium and energy charge in tomato. Planta, 227, 883-891. doi:10.1007/s00425-007-0664-2
[19] Lantow, M., Lupke, M., Frahm, J., Mattsson, M.O., Kuster, N. and Simko, M. (2006) ROS release and Hsp70 expression after exposure to 1800 MHz radiofrequency electromagnetic fields in primary human monocytes and lymphocytes. Radiation and Environmental Biophysics, 45, 55-62. doi:10.1007/s00411-006-0038-3
[20] Czyz, J., Guan, K., Zeng, Q., Nikolova, T., Meister, A., Schönborn, F., Schuderer, J., Kuster, N. and Wobus, A.M. (2004) High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics, 25, 296-307. doi:10.1002/bem.10199
[21] Chauhan, V., Mariampillai, A., Bellier, P.V., Qutob, S.S., Gajda, G.B., Lemay, E., Thansandote, A. and McNamee, J.P. (2006) Gene expression analysis of a human lymphoblastoma cell line exposed in vitro to an intermittent 1.9 GHz pulse-modulated radiofrequency field. Radiation Research, 165, 424-429. doi:10.1667/RR3531.1
[22] Nylund, R. and Leszczynski, D. (2006) Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genomeand proteome-dependent. Proteomics, 6, 47694780. doi:10.1002/pmic.200600076
[23] Remondini, D., Nylund, R., Reivinen, J., Poulletier de Gannes, F., Veyret, B., Lagroye, I., Haro, E., Trillo, M.A., Capri, M., Franceschi, C., Schlatterer, K., Gminski, R., Fitzner, R., Tauber, R., Schuderer, J., Kuster, N., Leszczynski, D., Bersani, F. and Maercker, C. (2006) Gene expression changes in human cells after exposure to mobile phone microwaves. Proteomics, 6, 4745-4754. doi:10.1002/pmic.200500896
[24] Nylund, R., Kuster, N. and Leszczynski, D. (2010) Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells. Proteome Science, 18, 8-52.
[25] Karinen, A., Heinävaara, S., Nylund, R. and Leszczynski, D. (2008) Mobile phone radiation might alter protein expression in humanb skin. BMC Genomics, 9, 77 doi:10.1186/1471-2164-9-77
[26] Paulraj, R. and Behari, J. (2006) Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Research, 596, 76-80. doi:10.1016/j.mrfmmm.2005.12.006
[27] Paulraj, R. and Behari, J. (2004) Radiofrequency radiation effect on protein kinase C activity in rats brain. Mutation Research, 585, 127-131. doi:10.1016/S0027-5107(03)00113-1
[28] Kesari, K. K., and Behari, J. (2010) Effect of microwave at 2.45 GHz radiations on reproductive system of male rats. Toxicological & Environmental Chemistry, 92, 1135-1147. doi:10.1080/02772240903233637
[29] Tkalec, M., Malaric, K., Pavlica, M., Pevalek-Kozlina, B. and Vidakovic-Cifreka, Z. (2009) Effects of radiofrequency electromagnetic fields on seed germination and root meristematic cells of Allium cepa L.. Mutation Research, 672, 76-81. doi:10.1016/j.mrgentox.2008.09.022
[30] Ballardin, M., Tusa, I., Fontana, N., Monorchio, A., Pelletti, C., Rogovich, A., Barale, R. and Scarpatoa, R. (2011) Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells. Mutation Research, 716, 1-9. doi:10.1016/j.mrfmmm.2011.07.009
[31] Ortner, M.J., Galvin, M.J. and Irwin, R.D. (1983) The effect of 2450MHz microwave radiation during microtubular polymerization in vitro. Radiation Research, 93, 353-363. doi:10.2307/3575991
[32] Schrader, T., Munter, K., Kleine-Ostmann, T. and Schmid, E. (2008) Spindle disturbances in human-hamster hybrid (AL) cells induced by mobile communication frequency range signals. Bioelectromagnetics, 29, 626-639. doi:10.1002/bem.20428
[33] Vander Vorst, A., Rosen, A. and Kotsuka, Y. (2006) RF/Microwave interaction with biological tissues IEEE press, John Wiley & Sons, Inc, Hoboken.
[34] Blank, M. and Soo, L. (2001) Electromagnetic acceleration of electron transfer reactions. Journal of Cellular Biochemistry, 81, 278-283. doi:10.1002/1097-4644(20010501)81:2<278::AID-JCB1042>3.0.CO;2-F
[35] Blank, M. (2008) Protein and DNA reactions stimulated by electromagnetic fields. Electromagnetic Biology and Medicine, 27, 3-23. doi:10.1080/15368370701878820
[36] Levin, M. (2003) Bioelectromagnetics in morphogenesis. Bioelectromagnetics, 24, 295-315. doi:10.1002/bem.10104
[37] Lacy-Hulbert, A., Metcalfe, J.C. and Hesketh, R. (1998) Biological responses to electromagnetic fields. The FASEB Journal, 12, 395-420.
[38] Challis, L. (2005) Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics, 7, S98-S106. doi:10.1002/bem.20119
[39] Panagopoulos, D.J., Messini, N., Karabarbounis, A., Philippetis, A.L. and Margaritis, L.H. (2000) A Mechanism for Action of Oscillating Electric Fields on Cells. Biochemical and Biophysical Research Communications, 272, 634-640. doi:10.1006/bbrc.2000.2746
[40] Irigaray, P. and Belpomme, D. (2010) Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis, 31, 135-148. doi:10.1093/carcin/bgp252
[41] Storz, P. (2005) Reactive oxygen species in tumor progression. Frontiers in Bioscience, 10, 1881-1896. doi:10.2741/1667
[42] Schmidt, K.N., Amstad, P., Cerutti, P. and Baeuerle, P.A. (1995) The roles of hydrogen peroxide and superoxide as messengers in the activation of transcription factor NFkappa B. Chemistry & Biology, 2, 13-22. doi:10.1016/1074-5521(95)90076-4
[43] Guijarro, M.V., Leal, J.F.M., Blanco-Aparicio, C., Alonso, S., Fominaya, J., Lleonart, M., Castellvi, J., Ramon y Cajal, S. and Carnero, A. (2007) MAP17 enhances the malignant behavior of tumor cells through ROS increase. Carcinogenesis, 28, 2096-2104. doi:10.1093/carcin/bgm124
[44] WiIttgen, H.G. and Van Kempen, L.C. (2007) Reactive oxygen species in melanoma and its therapeutic implications. Melanoma Research, 17, 400-409. doi:10.1097/CMR.0b013e3282f1d312
[45] Valko, M., Rhodes, C.J., Moncol, J., Izakovic, M. and Mazur, M. (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1-40. doi:10.1016/j.cbi.2005.12.009
[46] Giannoni, E., Fiaschi, T., Ramponi, G. and Chiarugi, P. (2009) Redox regulation of anoikis resistance of metastatic prostate cancer cells: Key role for Src and EGFRmediated pro-survival signals. Oncogene, 28, 2074-2086. doi:10.1038/onc.2009.77
[47] Thornber, K., Colomba, A., Ceccato, L., Delsol, G., Payrastre, B. and Gaits-Iacovoni, F. (2009) Reactive oxygen species and lipoxygenases regulate the oncogenicity of NPM-ALK-positive anaplastic large lymphomas. Oncogene, 28, 2690-2696. doi:10.1038/onc.2009.125
[48] Finkel, T. (1998) Oxygen radicals and signaling. Current Opinion in Cell Biology, 10, 248-253. doi:10.1016/S0955-0674(98)80147-6
[49] Bae, G.U., Kim, Y.K., Kwon, H.K., Park, J.W., Lee, E.K., Paek, S.J., Choi, W.S., Jung, I.D., Lee, H.Y., Cho, E.J., Lee, H.W. and Han, J.W. (2004) Hydrogen peroxide mediates Rac1 activation of S6K1. Experimental Cell Research, 300, 476-484. doi:10.1016/j.yexcr.2004.07.013
[50] Abe, J., Okuda, M., Huang, Q., Yoshizumi, M. and Berk, B.C. (2000) Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. The Journal of Biological Chemistry, 275, 1739-1748. doi:10.1074/jbc.275.3.1739
[51] Liu, J., Qu, W. and Kadiiska, M.B. (2009) Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicology and Applied Pharmacology, 238, 209-214. doi:10.1016/j.taap.2009.01.029
[52] Zhou, B.B., Zhang, H., Damelin, M., Geles, K.G., Grindley, J.C. and Dirks, P.B. (2009) Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nature Reviews, 8, 806-823. doi:10.1038/nrd2137
[53] Yeh, C.C., Hou, M.F., Tsai, S.M., Lin, S.K., Hsiao, J.K., Huang, J.C., Wang, L.H., Zsebik, S.B., Citri, A., Isola, J., Yarden, Y., Szollosi, J. and Vereb, G. (2006) Hsp90 inhibitor 17-AAG reduces ErbB2 levels and inhibits proliferation of the trastuzumab resistant breast tumor cell line JIMT-1. Immunology Letters, 104, 146-155. doi:10.1016/j.imlet.2005.11.018
[54] Hortobagyi, G.N.S.S. and Strom, E.A. (2000) Treatment of locally advanced and inflammatory breast cancer. In: Harris, J.R.M.M. and Osbourne, C.K., Eds., Diseases of the breast, Lippincott Williams & Wilkins, Philadelphia, 645-660.
[55] Moasser, M.M. (2007) The oncogene HER2: Its signaling and transforming functions and its human role in pathogenesis. Oncogene, 26, 6469-6487. doi:10.1038/sj.onc.1210477
[56] Parton, M., Dowsett, M., Ashley, S., Hills, M., Lowe, F. and Smith, I.E. (2004) High incidence of HER-2 positivity in inflammatory breast cancer. The Breast, 13, 97-103. doi:10.1016/j.breast.2003.08.004
[57] Weisbrot, D., Lin, H., Ye, L., Blank, M. and Goodman, R. (2003) Effects of mobile phone radiation on reproduction and development in Drosophila melanogaster. Journal of Cellular Biochemistry, 89, 48-55. doi:10.1002/jcb.10480
[58] Friedman, J., Kraus, S., Hauptman, Y., Schiff, Y. and Seger, R. (2007) Mechanism of short-term ERK activetion by electromagnetic fields at mobile phone frequentcies. Biochemical Journal, 405, 559-568. doi:10.1042/BJ20061653
[59] Yoon, S. and Seger, R. (2006) The extracellular signalregulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors, 24, 21-44. doi:10.1080/02699050500284218
[60] Leszczynski, D., Nylund, R., Joevaara, S. and Reivinen, J. (2004) Applicability of discovery science approach to determine biological effects of mobile phone radiation. Proteonomics, 4, 426-431. doi:10.1002/pmic.200300646
[61] Rao, S. and Henderson, A.S. (1996) Regulation of c-fos is affected by electromagnetic fields. Journal of Cellular Biochemistry, 63, 358-365. doi:10.1002/(SICI)1097-4644(19961201)63:3<358::AID-JCB11>3.0.CO;2-D
[62] Blank, M. and Goodman, R. (2009) Electromagnetic fields stress living cells. Pathophysiology, 16, 71-78. doi:10.1016/j.pathophys.2009.01.006
[63] Chen, F., Castranova, V. and Shi, X. (2001) New insights into the role of nuclear factor-kappa B in cell growth regulation. American Journal of Pathology, 159, 387-397. doi:10.1016/S0002-9440(10)61708-7
[64] Bahassi el, M., Karyala, S., Tomlinson, C.R., Sartorm, M.A., Medvedovic, M. and Hennigan, R.F. (2004) Critical regulation of genes for tumor cell migration by AP-1. Clinical and Experimental Metastasis, 21, 293-304. doi:10.1023/B:CLIN.0000046132.46946.dd
[65] Meylan, E., Dooley, A.L., Feldser, D.M., Shen, L., Turk, E., Ouyang, C. and Jacks, T. (2009) Requirement for NF-κB signalling in a mouse model of lung adenocarcinoma. Nature, 462, 104-107. doi:10.1038/nature08462
[66] Nakshatri, H., Bhat-Nakshatri, P., Martin, D.A., Goulet Jr, R.J. and Sledge Jr, G.W. (1997) Constitutive activation of NF-kappaB diring progression of breast cancer to hormone-independent growth. Molecular and Cellular Biology, 17, 3629-3639.
[67] Sliva, D., Rizzo, M.T. and English, D. (2002) Phosphatidylinositol 3-kinase and NF-kappaB regulate motility of invasive MDA-MB-231 human breast cancer cells by secretion of urokinase-type plasminogen activator. The Journal of Biological Chemistry, 277, 3150-3157. doi:10.1074/jbc.M109579200
[68] Knight, J.A. (2000) Free radicals, antoxidants, and the immune system. Annals of Clinical & Laboratory Science, 30, 145-158.
[69] Greten, T.F., Korangy, F., Manns, M.P. and Malek, N.P. (2009) Molecular therapy for the treatment of hepatocellular carcinoma. British Journal of Cancer, 100, 19-23. doi:10.1038/sj.bjc.6604784
[70] Ma, X., Becker Buscaglia, L.E., Barker, J.R. and Li,Y. (2011) MicroRNAs in NF-kB signaling. Journal of Molecular Cell Biology, 3, 159-166. doi:10.1093/jmcb/mjr007
[71] Cogswell, P.C., Guttridge, D.C., Funkhouser, W.K. and Baldwin Jr, A.S. (2000) Selective activation of NF kappa B subunits in human breast cancer: Potential roles for NF-kappa B2/p52 and for Bcl-3. Oncogene, 19, 11231131. doi:10.1038/sj.onc.1203412
[72] Cao, Y. and Karin, M. (2003) NF-kappaB in mammary gland development and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 8, 215-223. doi:10.1023/A:1025905008934
[73] Biswas, D.K., Shi, Q., Baily, S., Strickland, I., Ghosh, S., Pardee, A.B. and Iglehard, J.D. (2004) NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 101, 10137-10142. doi:10.1073/pnas.0403621101
[74] Huber, M.A., Azoitei, N., Baumann, B., Grunert, S., Sommer, A., Pehamberger, H., Kraut, N., Beug, H. and Wirth, T. (2004) NF-kappaB is essential for epithelialmesenchymal transition and metastasis in a model of breast cancer progression. Journal of Clinical Investigation, 114, 569-581.
[75] Pikarsky, E., Porat, R.M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., Gutkovich-Pyest, E., Urieli-Shoval, S., Galun, E. and Ben-Neriah, Y. (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431, 461-466. doi:10.1038/nature02924
[76] Lerebours, F., Vacher, S., Andrieu, C., Espie, M., Marty, M., Lidereau, R. and Bieche, I. (2008) NF-kappa B genes have a major role in Inflammatory Breast Cancer. BMC Cancer, 8, 41. doi:10.1186/1471-2407-8-41
[77] Bertucci, F., Finetti, P., Rougemont, J., Charafe-Jauffret, E., Nasser, V., Loriod, B., Camerlo, J., Tagett, R., Tarpin, C., Houvenaeghel, G., Jacquemier, J., Houlgatte, R., Birnbaum, D. and Viens, P. (2004) Gene expression profiling for molecular characterization of inflammatory breast cancer and prediction of response to chemotherapy. Cancer Research, 64, 8558-8565. doi:10.1158/0008-5472.CAN-04-2696
[78] Van Laere, S., Van der Auwera, I., Van den Eynden, G.G., Fox, S.B., Bianchi, F., Harris, A.L., van Dam, P., Van Marck, E.A., Vermeulen, P.B. and Dirix, L.Y. (2005) Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer Research and Treatment, 93, 237-246. doi:10.1007/s10549-005-5157-z
[79] Baldwin Jr, A.S. (1996) The NF-kappaB and IkappaB proteins: new discoveries and insights. Annual Review of Immunology, 14, 649-683. doi:10.1146/annurev.immunol.14.1.649
[80] Chaturvedi, M.M., Sung, B., Yadav, V.R., Kannappan R. and Aggarwal B.B. (2011) NF-kB addiction and its role in cancer: ‘One size does not fit all’. Oncogene, 30, 16151630. doi:10.1038/onc.2010.566
[81] Irmak, M.K., Fadillioglu, E., Gulec, M., Erdogan, H., Yagmurca, M. and Akyol, O. (2002) Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochemistry and Function, 20, 279-283. doi:10.1002/cbf.976
[82] Zmyslony, M., Politanski, P., Rajkowska, E., Szymczak, W. and Jajte, J. (2004) Acute exposure to 930 MHz CW electromagnetic radiation in vitro affects reactive oxygen species level in rat lymphocytes treated by iron ions. Bioelectromagnetics, 25, 324-328. doi:10.1002/bem.10191
[83] Markovà, E., Malmgren, L.O.G. and Belyaev, I.Y. (2010) Microwaves from mobile phones inhibit 53bp1 focus formation in human stem cells more strongly than in differentiated cells: Possible mechanistic link to cancer risk. Environmental Health Perspectives, 118, 394-399.
[84] Karaca, E., Durmaz, B., Aktug, H., Yildiz, T., Guducu, C., Irgi, M., Koksal, M.G.C., Ozkinay, F., Gunduz, C. and Cogulu, O. (2012) The genotoxic effect of radiofrequency waves on mouse brain. Journal of Neuro-Oncology, 106, 53-58. doi:10.1007/s11060-011-0644-z
[85] Mantovani, A. (2010) Molecular pathways linking inflammation and cancer. Current Molecular Medicine, 10, 369-373. doi:10.2174/156652410791316968
[86] Pollard, J.W. (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4, 71-78. doi:10.1038/nrc1256
[87] Lewis, C.E. and Pollard, J.W. (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Research, 66, 605-612. doi:10.1158/0008-5472.CAN-05-4005
[88] Coffelt, S.B., Hughes, R. and Lewis, C.E. (2009) Tumorassociated macrophages: Effectors of angiogenesis and tumor progression. Biochimica et Biophysica Acta, 1796, 11-18.
[89] Connelly, L., Barham, W., Onishko, H.M., Chen, L., Sherrill, T.P., Zabuawala, T., Ostrowski, M.C., Blackwell, T.S. and Yull, F.E. (2011) NF-kappaB activation within macrophages leads to an anti-tumor phenotype in a mammary tumor lung metastasis model. Breast Cancer Research, 13, R83. doi:10.1186/bcr2935
[90] Panagopoulos, D.J. and Margaritis, L.H. (2010) The effect of exposure duration on the biological activity of mobile telephony radiation. Mutation Research, 699, 1722. doi:10.1016/j.mrgentox.2010.04.010
[91] Lobry, C. and Weil, R. (2007) New Bcl10 regulation mechanisms: A step in the comprehension of which has occurred in MALT lymphomas? M/S, 23, 353-355.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.