A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments
Mark Haig Khachaturian
DOI: 10.4236/jbise.2010.311141   PDF    HTML     7,135 Downloads   12,200 Views   Citations


Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

Share and Cite:

Khachaturian, M. (2010) A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments. Journal of Biomedical Science and Engineering, 3, 1085-1092. doi: 10.4236/jbise.2010.311141.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ekstrom, L.B., Roelfsema, P.R., Arsenault, J.T., Bonmassar, G. and Vanduffel, W. (2008) Bottom-up dependent gating of frontal signals in early visual cortex. Science, 321, 414-417.
[2] Sasaki, Y., Rajimehr, R., Kim, B.W., Ekstrom, L.B., Vanduffel, W. and Tootell, R.B. (2006) The radial bias: A different slant on visual orientation sensitivity in human and nonhuman primates. Neuron, 51, 661-670.
[3] Vanduffel, W., Fize, D., Mandeville, J.B., Nelissen, K., Van Hecke, P., Rosen, B.R., Tootell, R.B. and Orban, G.A. (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awaking behaving monkeys. Neuron, 32, 565-577.
[4] Tsao, D.Y., Vanduffel, W., Sasaki, Y., Fize, D., Knutsen, T.A., Mandeville, J.B., Wald, L.L., Dale, A.M., Rosen, B.R., Van Essen, D.C., Livingstone, M.S., Orban, G.A. and Tootell, R.B. (2003) Stereopsis activates V3A and caudal intraparietal areas in macaques and humans. Neuron, 39, 555-568.
[5] Khachaturian, M.H., Arsenault, J., Ekstrom, L.B., Tuch, D.S. and Vanduffel, W. (2008) Focal reversible deactivation of cerebral metabolism affects water diffusion. Magnetic Resonance in Medicine, 60, 1178-1189.
[6] Behrens, T.E., Johansen-Berg, H., Woolrich, M.W., Smith, S.M., Wheeler-Kingshott, C.A., Boulby, P.A., Barker, G.J., Sillery, E.L., Sheehan, K., Ciccarelli, O., Thompson, A.J., Brady, J.M. and Matthews, P.M. (2003) Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6, 750-757.
[7] Gerig, G., Gouttard, S. and Corouge, I. (2004) Analysis of brain white matter via fiber tract modeling. Conference Proceedings - IEEE Engineering in Medicine and Biology Society, 6, 4421-4424.
[8] Price, G., Cercignani, M., Parker, G.J., Altmann, D.R., Barnes, T.R., Barker, G.J., Joyce, E.M. and Ron, M.A. (2007) Abnormal brain connectivity in first-episode psychosis: A diffusion MRI tractography study of the corpus callosum. Neuroimage, 35, 458-466.
[9] Yamamoto, A., Miki, Y., Urayama, S., Fushimi, Y., Okada, T., Hanakawa, T., Fukuyama, H. and Togashi, K. (2007) Diffusion tensor fiber tractography of the optic radiation: analysis with 6-, 12-, 40-, and 81-directional motion-probing gradients, a preliminary study. American Journal of Neuroradiology, 28, 92-96.
[10] Tuch, D., Wisco, J., Khachaturian, M., Ekstrom, L., Kotter, R. and Vanduffel, W. (2005) Q-ball imaging of macaque white matter architecture. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457), 869-879.
[11] Khachaturian, M.H., Wisco, J.J. and Tuch, D.S. (2007) Boosting the sampling efficiency of q-Ball imaging using multiple wavevector fusion. Magnetic Resonance in Medicine, 57, 289-296.
[12] Tuch, D.S. (2004) Q-ball imaging. Magnetic Resonance in Medicine, 52, 1358-1372.
[13] Wedeen, V., Reese, T.G., Tuch, D.S., Weigel, M.R., Dou, J.G., Weiskoff, R.M. and Chessler, D. (2000) Mapping fiber orientation spectra in cerebral white matter with fourier-transform diffusion MRI. Proceedings of International Society Magnetic Resonance in Medicine, Denver, 82.
[14] Hayes, C.E, Hattes, N. and Roemer, P.B. (1991) Volume imaging with MR phased arrays. Magnetic Resonance in Medicine, 18, 309-319.
[15] Wright, S.M. and Wald, L.L. (1997) Theory and application of array coils in MR spectroscopy. NMR in Biomedicine, 10, 394-410.
[16] Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesige, P. (1999) SENSE: sensitivity encoding for fast MRI. Magnetic Resonance in Medicine, 42, 952-962.
[17] Sodickson, D.K., Griswold, M.A. and Jakob, P.M. (1999) Smash imaging. Magnetic Resonance Imaging Clinics of North America, 7, 237-254.
[18] Jaermann, T., Crelier G, Pruessmann KP, Golay X, Netsch T, van Muiswinkel AM, Mori S, van Zijl PC, Valavanis A, Kollias S, Boesiger P. SENSE-DTI at 3 T. Magn Reson Med. 2004; 51, 230-236.
[19] Jaermann, T., Pruessmann, K.P., Valavanis, A., Kollias, S. and Boesiger, P. (2006) Influence of SENSE on image properties in high-resolution single-shot echo-planar DTI. Magnetic Resonance in Medicine, 55, 335-342.
[20] Wiggins, G.C., Triantafyllou, C., Potthast, A., Reykowski, A., Nittka, M. and Wald, L.L. (2006) 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry. Magnetic Resonance in Medicine, 56, 216-223.
[21] Tootell, R.B., Tsao, D. and Vanduffel, W. (2003) Neuroimaging weighs in: humans meet macaques in “primate” visual cortex. Journal of Neuroscience, 23, 3981-3989.
[22] Hardy, C.J., Edelstein, W.A. and Mueller, O.M. (1986) Surface-coil T1 images. Magn Reson Med., 3, 935-40.
[23] Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. (1990) The NMR phased array. Magnetic Resonance in Medicine, 16, 192-225.
[24] Constantinides, C.D., Westgate, C.R., O'Dell, W.G., Zerhouni, E.A. and McVeigh, E.R. (1995) A phased array coil for human cardiac imaging. Magnetic Resonance in Medicine, 34, 92-98.
[25] Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B. and Haase, A. (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magnetic Resonance in Medicine, 47, 1202- 1210.
[26] Reese, T.G., Heid, O., Weisskoff, R.M. and Wedeen, V.J. (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magnetic Resonance in Medicine, 49, 177-182.
[27] Jones, D.K., Horsfield, M.A. and Simmons, A. (1999) Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magnetic Resonance in Medicine, 42, 515-525.
[28] Basser, P.J., Mattiello, J., LeBihan, D. (1994) MR diffusion tensor spectroscopy and imaging. Biophysics Journal, 66, 259-267.
[29] Mugler, J.P. and Brookeman, J.R. (1990) Three-dimen- sional magnetization-prepared rapid gradient-echo imaging (3D MP RAGE). Magnetic Resonance in Medicine, 15, 152-157.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.