Square-Wave Adsorptive Cathodic Stripping Voltammeteric Determination of Manganese (II) Using a Carbon Paste Electrode Modified with Montmorillonite Clay


Manganese is an essential micronutrient for all organisms; however at high concentrations it has a toxic effect. Manganese toxicity is a serious constraint to crop cultivation since it is taken-up by plants and can easily be passed into the food chain again causing symptoms of Parkinson’s disease. A fully validated square-wave adsorptive cathodic stripping voltammetry method has been developed for determination of Mn (II) as a complex with 2-(5’-bromo-2’-pyridylazo) 5-diethylaminophenol in aqueous solutions using a carbon paste electrode (CPE) modified with montmorillonite-Na clay. The results showed that the modified CPE (90% (w/w) graphite powder and 10% (w/w) montmorillonite-Na clay) exhibited excellent electrochemical activity towards the investigated Mn (II) complex in acetate buffer of pH = 5.0. Factors affecting the performance of the modified carbon paste electrode and the sensitivity of the described square- wave stripping voltammetry method, including the electrode composition, concentration of ligand, pulse parameters and preconcentration conditions were examined. A detection limit (S/N = 3) of 0.015μg·L-1 (2.73 × 10-10 mol·L-1) Mn (II) was achieved when a preconcentration time of 240 s was applied. Insignificant interferences from various inorganic and organic species were estimated. The described square-wave adsorptive cathodic stripping voltammetry method coupled with the modified carbon paste electrode has been successfully applied to Mn (II) analysis in different water samples.

Share and Cite:

A. Beltagi, I. Ismail and M. Ghoneim, "Square-Wave Adsorptive Cathodic Stripping Voltammeteric Determination of Manganese (II) Using a Carbon Paste Electrode Modified with Montmorillonite Clay," American Journal of Analytical Chemistry, Vol. 4 No. 4, 2013, pp. 197-206. doi: 10.4236/ajac.2013.44025.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. H. J. Rehm and G. Reed, “Microbial Degradations,” VCH, Weinheim, 1986.
[2] G. M. Gadd and A. J. Griffiths, “Microorganisms and Heavy Metal Toxicity,” Microbial Ecology, Vol. 4, No. 4, 1978, pp. 303-317. doi:10.1007/BF02013274
[3] R. Witholt, R. H. Gwiazda and D. R. Smith, “The Neuro- behavioral Effects of Subchronic Manganese Exposure in the Presence and Absence of Pre-Parkinsonism,” Neuro- toxicology and Teratology, Vol. 22, No. 6, 2000, pp. 851- 861. doi:10.1016/S0892-0362(00)00108-2
[4] N. V. Hue, S. Vega and J. A. Silva, “Manganese Toxicity in a Hawaiian Oxisol Affected by Soil pH and Organic Amendments,” Soil Science Society of America Journal, Vol. 65, No. 1, 2001, pp. 153-160. doi:10.2136/sssaj2001.651153x
[5] N. Maniasso and E. A. G. Zagatto, “Flow-Injection Spectrophotometric Catalytic Determination of Manganese in Plants Exploiting the Aerial Oxidation of Diphenyl Carbazone,” Analytica Chimica Acta, Vol. 366, No. 1, 1998, pp. 87-92. doi:10.1016/S0003-2670(97)00682-X
[6] A. A. Abdel-Shafi, “Spectrophotometric Determination of Manganese by Using Redox Reaction of Tris (2,2’-bipyridine) Osmium(II) with Mn7+,” Analytical Sciences, Vol. 22, No. 6, 2006, pp. 825-828. doi:10.2116/analsci.22.825
[7] H. Sedaira, “Simultaneous Determination of Manganese and Zinc in Mixtures Using First- and Second-Derivative Spectrophotometry,” Talanta, Vol. 51, No. 1, 2000, pp. 39-48. doi:10.1016/S0039-9140(99)00244-1
[8] Q. Wei, L. G. Yan, G. H. Chang and Q. Y. Ou, “Kinetic Spectrophotometric Determination of Trace Manganese (II) with Dahlia Violet in Nonionic Microemulsion Medium,” Talanta, Vol. 59, No. 2, 2003, pp. 253-259. doi:10.1016/S0039-9140(02)00498-8
[9] H. Bilinski, Z. Kwokal and M. Branica, “Formation of Some Manganese Minerals from Ferromanganese Factory Waste Disposed in the Krka River Estuary,” Water Research, Vol. 30, No. 3, 1996, pp. 495-500. doi:10.1016/0043-1354(95)00207-3
[10] H. Ohura, Y. Ishibashi, T. Imato and S. Yamasaki, “Potentiometric Flow Injection Determination of Manganese (II) by Using a Hexacyanoferrate (III)-Hexacyanoferrate (II) Potential Buffer,” Talanta, Vol. 60, No. 1, 2003, pp. 177- 184. doi:10.1016/S0039-9140(03)00120-6
[11] V. O. Doroschuk, S. O. Lelyushok, V. B. Ishchenko and S. A. Kulichenko, “Flame Atomic Absorption Determination of Manganese (II) in Natural Water after Cloud Point Extraction,” Talanta, Vol. 64, No. 4, 2004, pp. 853-856. doi:10.1016/j.talanta.2004.03.056
[12] R. G. O. Araujo, F. S. Dias, S. M. Macedo, W. N. L. dos Santos and S. L. C. Ferreira, “Method Development for the Determination of Manganese in Wheat Flour by Slurry Sampling Flame Atomic Absorption Spectrometry,” Food Chemistry, Vol. 101, No. 1, 2007, pp. 397-400. doi:10.1016/j.foodchem.2005.10.024
[13] V. A. Lemos, L. N. Santos and M. A. Bezerra, “Determination of Cobalt and Manganese in Food Seasonings by Flame Atomic Absorption Spectrometry after Preconcentration with 2-Hydroxyacetophenone-Functionalized Polyurethane Foam,” Journal of Food Composition and Analysis, Vol. 23, No. 3, 2010, pp. 277-281.
[14] Ç. A. Sahin, M. Efeç1nar and N. Sat1roglu, “Combination of Cloud Point Extraction and Flame Atomic Absorption Spectrometry for Preconcentration and Determination of Nickel and Manganese Ions in Water and Food Samples,” Journal of Hazardous Materials, Vol. 176, No. 1-3, 2010, pp. 672-677.
[15] A. P. dos Anjos, L. Cornejo-Ponce, S. Cadore and N. Baccan, “Determination of Manganese by Flame Atomic Absorption Spectrometry after Its Adsorption onto Naphthalene Modified with 1-(2-Pyridylazo)-2-naphthol (PAN),” Talanta, Vol. 71, No. 3, 2007, pp. 1252-1256. doi:10.1016/j.talanta.2006.06.026
[16] V. A. Lemos and G. T. David, “An On-Line Cloud Point Extraction System for Flame Atomic Absorption Spectrometric Determination of Trace Manganese in Food Samples,” Microchemical Journal, Vol. 94, No. 1, 2010, pp. 42-47. doi:10.1016/j.microc.2009.08.008
[17] P. R. M. Correia, E. de Oliveira and P. V. Oliveira, “Simultaneous Determination of Manganese and Selenium in Serum by Electrothermal Atomic Absorption Spectrometry,” Talanta, Vol. 57, No. 3, 2002, pp. 527-535. doi:10.1016/S0039-9140(02)00069-3
[18] P. G. Su and S. D. Huang, “Direct and Simultaneous Determination of Copper and Manganese in Seawater with a Multielement Graphite Furnace Atomic Absorption Spectrometer,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 53, No. 5, 1998, pp. 699-708.
[19] H. M. Liu, S. J. J. Tsai, F. C. Cheng and S. Y. Chung, “Determination of Trace Manganese in the Brain of Mice Subjected to Manganese Deposition by Graphite Furnace Atomic Absorption Spectrometry,” Analytica Chimica Acta, Vol. 405, No. 1-2, 2000, pp. 197-203.
[20] G. P. Brandão, R. C. de Campos, E. V. R. de Castro and H. C. de Jesus, “Determination of Manganese in Diesel, Gasoline and Naphtha by Graphite Furnace Atomic Absorption Spectrometry Using Microemulsion Medium for Sample Stabilization,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 63, No. 8, 2008, pp. 880-884. doi:10.1016/j.sab.2008.04.019
[21] M. Hsiang, Y. Sung and S. Huang, “Direct and Simultaneous Determination of Arsenic, Manganese, Cobalt and Nickel in Urine with a Multielement Graphite Furnace Atomic Absorption Spectrometer,” Talanta, Vol. 62, No. 4, 2004, pp. 791-799. doi:10.1016/j.talanta.2003.09.031
[22] K. Uysal, Y. Emre and E. Kose, “The Determination of Heavy Metal Accumulation Ratios in Muscle, Skin and Gills of Some Migratory Fish Species by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) in Beymelek Lagoon (Antalya/Turkey),” Microchemical Journal, Vol. 90, No. 1, 2008, pp. 67-70. doi:10.1016/j.microc.2008.03.005
[23] M. A. Bezerra, S. M. D. Maeda, E. P. Oliveira, M. D. B. de Carvalho and R. E. Santelli, “Internal Standardization for the Determination of Cadmium, Cobalt, Chromium and Manganese in Saline Produced Water from Petroleum Industry by Inductively Coupled Plasma Optical Emission Spectrometry after Cloud Point Extraction,” Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 62, No. 9, 2007, pp. 985-991. doi:10.1016/j.sab.2007.06.009
[24] J. Wang, “Stripping Analysis: Principles, Instrumentation and Application,” VCH, Deerfield Beach, 1985.
[25] M. M. Ghoneim, A. M. Hassanein, E. Hammam and A. M. Beltagi, “Simultaneous Determination of Cd, Pb, Cu, Sb, Bi, Se, Zn, Mn, Ni, Co and Fe in Water Samples by Differential Pulse Stripping Voltammetry at a Hanging Mercury Drop Electrode,” Fresenius’ Journal of Analytical Chemistry, Vol. 367, No. 4, 2000, pp. 378-383. doi:10.1007/s002160000410
[26] C. Locatelli and G. Torsi, “Voltammetric Trace Metal Determinations by Cathodic and Anodic Stripping Voltammetry in Environmental Matrices in the Presence of Mutual Interference,” Journal of Electroanalytical Chemistry, Vol. 509, No. 1, 2001, pp. 80-89.
[27] R. Piech, B. Bas and W. W. Kubiak, “The Cyclic Renewable Mercury Film Silver Based Electrode for Determination of Manganese (II) Traces Using Anodic Stripping Voltammetry,” Journal of Electroanalytical Chemistry, Vol. 621, No. 1, 2008, pp. 43-48.
[28] A. Romanus, H. Muller and D. Kirsch, “Application of Adsorptive Stripping Voltammetry (AdSV) for the Analysis of Trace-Metals in Brine 1. Batch Voltammetric Measurements,” Fresenius’ Journal of Analytical Chemistry, Vol. 340, No. 6, 1991, pp. 363-370. doi:10.1007/BF00321583
[29] L. Z. Wang, C. S. Ma, X. L. Zhang and J. G. Wang, “Determination of Trace Manganese by Adsorption Voltammetry,” Analytical Letters, Vol. 26, No. 8, 1993, pp. 1711- 1717. doi:10.1080/00032719308021491
[30] J. Wang and J. M. Lu, “Adsorptive Stripping Voltammetry of Trace Manganese in the Presence of 2-(5’-Bromo- 2’-pyridylazo)-5-diethylamino Phenol (5-Br-PADAP),” Talanta, Vol. 42, No. 3, 1995, pp. 331-335. doi:10.1016/0039-9140(95)01396-S
[31] N. A. El-Maali and D. A. El-Hady, “Square-Wave Adsorptive Stripping Voltammetry at Glassy Carbon Electrode for Selective Determination of Manganese. Application to Some Industrial Samples,” Analytica Chimica Acta, Vol. 370, No. 2, 1998, pp. 239-249. doi:10.1016/S0003-2670(98)00300-6
[32] J. W. Di and F. Zhang, “Voltammetry Determination of Trace Manganese with Pretreatment Glassy Carbon Electrode by Linear Sweep Voltammetry,” Talanta, Vol. 60, No. 1, 2003, pp. 31-36.
[33] J. S. Roitz and K. W. Bruland, “Determination of Dissolved Manganese (II) in Coastal and Estuarine Waters by Differential Pulse Cathodic Stripping Voltammetry,” Analytica Chimica Acta, Vol. 344, No. 3, 1997, pp. 175-180. doi:10.1016/S0003-2670(97)00041-X
[34] M. Rievaj, P. Tomcik, Z. Janosikova, D. Bustin and R. G. Compton, “Determination of Trace Mn (II) in Pharmaceutical Diet Supplements by Cathodic Stripping Voltammetry on Bare Carbon Paste Electrode,” Chemia Analityczna, Vol. 53, No. 1, 2008, pp. 153-161.
[35] E. M. Ghoneim, “Simultaneous Determination of Mn (II), Cu (II) and Fe (III) as 2-(5’-Bromo-2’-pyridylazo)-5-diethylaminophenol Complexes by Adsorptive Cathodic Stripping Voltammetry at a Carbon Paste Electrode,” Talanta, Vol. 82, No. 2, 2010, pp. 646-652. doi:10.1016/j.talanta.2010.05.025
[36] P. K. Ghosh and A. J. Bard, “Clay Modified Electrodes,” Journal of the American Chemical Society, Vol. 105, No. 17, 1983, pp. 5691-5693. doi:10.1021/ja00355a030
[37] P. Kula and Z. Navrátilová, “Voltammetric Copper (II) Determination with a Montmorillonite-Modified Carbon Paste Electrode,” Fresenius’ Journal of Analytical Chemistry, Vol. 354, No. 5-6, 1996, pp. 692-695.
[38] Z. Navrátilová and P. Kula, “Determination of Gold Using Clay Modified Carbon Paste Electrode,” Fresenius’ Journal of Analytical Chemistry, Vol. 367, No. 4, 2000, pp. 369- 372. doi:10.1007/s002160000401
[39] P. Kula and Z. Navrátilová, “Anion Exchange of Gold Chloro Complexes on Carbon Paste Electrode Modified with Montmorillonite for Determination of Gold in Pharmaceuticals,” Electroanalysis, Vol. 13, No. 8-9, 2001, pp. 795-798.
[40] P. Kula, Z. Navrátilová, P. Kulová and M. Kotoucek, “Sorption and Determination of Hg (II) on Clay Modified Carbon Paste Electrodes,” Analytica Chimica Acta, Vol. 385, No. 1, 1999, pp. 91-101. doi:10.1016/S0003-2670(98)00697-7
[41] W. S. Huang, C. H. Yang and S. H. Zhang, “Anodic Stripping Voltammetric Determination of Mercury by Use of a Sodium Montmorillonite-Modified Carbon-Paste Electrode,” Analytical and Bioanalytical Chemistry, Vol. 374, No. 6, 2002, pp. 998-1001. doi:10.1007/s00216-002-1438-0
[42] K. B. Ji and S. S. Hu, “Square Wave Voltammetric Determination of Trace Amounts of Europium (III) at Montmorillonite-Modified Carbon Paste Electrodes,” Collection of Czechoslovak Chemical Communications, Vol. 69, No. 8, 2004, pp. 1590-1599. doi:10.1135/cccc20041590
[43] D. Sun, C. D. Wan, G. Li and K. B. Wu, “Electrochemical Determination of Lead (II) Using a Montmorillonite Calcium-Modified Carbon Paste Electrode,” Microchimica Acta, Vol. 158, No. 3-4, 2007, pp. 255-260. doi:10.1007/s00604-006-0686-7
[44] A. M. Beltagi, “Utilization of a Montmorillonite-Ca- Modified Carbon Paste Electrode for the Stripping Voltammetric Determination of Diflunisal in Its Pharmaceutical Formulations and Human Blood,” Journal of Applied Electrochemistry, Vol. 39, No. 12, 2009, pp. 2375-2384. doi:10.1007/s10800-009-9924-0
[45] H. S. El-Desoky and M. M. Ghoneim, “Stripping Voltammetric Determination of Silymarin in Formulations and Human Blood Utilizing Bare and Modified Carbon Paste Electrodes,” Talanta, Vol. 84, No. 1, 2011, pp. 223- 234. doi:10.1016/j.talanta.2011.01.027
[46] A. M. Beltagi, E. M. Ghoneim and M. M. Ghoneim, “Simultaneous Determination of Cadmium (II), Lead (II), Copper (II) and Mercury (II) by Square-Wave Anodic Stripping Voltammetry at a Montmorillonite-Calcium Modified Carbon Paste Electrode,” Internnational Journal of Environmental Analytical Chemistry, Vol. 91, No. 1, 2011, pp. 17-32. doi:10.1080/03067310902962577
[47] X. C Qiu, Y. S. Zhang and Y. Q. Zhu, “Rapid Spectrophotometric Determination of Water-Soluble Manganese in Soils Using 2-(5-Bromo-2-pyridylazo)-5-diethyl-amino-phenol,” Soil Science, Vol. 138, No. 6, 1984, pp. 432- 435. doi:10.1097/00010694-198412000-00007
[48] Z. T. Jiang, R. Li, J. B. Xi and B. Q. Yi, “Determination of Trace Amounts of Manganese by Beta-Cyclodextrin Polymer Solid Phase Spectrophotometry Using 2-(5- Bromo-2-pyridylazo)-5-diethylaminophenol,” Analytica Chimica Acta, Vol. 392, No. 2-3, 1999, pp. 247-253. doi:10.1016/S0003-2670(99)00175-0
[49] M. Swartz and I. S. Krull, “Analytical Method Development and Validation,” Marcel Dekker, New York, 1997.
[50] G. D. Christian, “Analytical Chemistry,” 5th Edition, Willey, Hoboken, 1994.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.