Starting Point of Cluster-Derived Silicon Nanowires


The assembly of medium-sized silicon nanoclusters was simulated to study the starting point of the formation of cluster-derived silicon nanowires (CDSiNWs). Hydrogen-terminated clusters were found repulsing each other and inter-connecting through the hydrogen bonds, thus could not form a stable silicon nanowire (SiNW). Between the pristine silicon clusters without hydrogen saturation, the assembly takes place automatically. An orientation priority in cluster assembly is obtained, as silicon clusters Si29 are more possibly adhered along <111> direction than the other directions. Such an assembly may be the starting point of the SiNW growth along <111> direction. Moreover, it indicates the possibility of silicon tetrapods or zigzag wires formation, besides straight SiNWs.

Share and Cite:

A. Lu, "Starting Point of Cluster-Derived Silicon Nanowires," Journal of Modern Physics, Vol. 4 No. 4, 2013, pp. 501-504. doi: 10.4236/jmp.2013.44071.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Y. Cui, Z. Zhong, D. Wang, W. U. Wang and C. M. Lieber, “High Performance Silicon Nanowire Field Effect Transistors,” Nano Letters, Vol. 3, No. 2, 2003, pp. 149-152. doi:10.1021/nl025875l
[2] Y. Cui and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science, Vol. 291, No. 5505, 2001, pp. 851-853. doi:10.1126/science.291.5505.851
[3] X. H. Sun, N. B. Wong, C. P. Li, S. T. Lee and T. K. Sham, “Chainlike Silicon Nanowires: Morphology, Electronic Structure and Luminescence Studies,” Journal of Applied Physics, Vol. 96, No. 6, 2004, pp. 3447-3451. doi:10.1063/1.1782958
[4] F. Sacconi, M. P. Persson, M. povolotskyi, L. Latessa, A. Pecchia, A. Gagliardi, A. Balint, T. Fraunheim and A. D. Carlo, “Electronic and Transport Properties of Silicon Nanowires,” Journal of Computational Electronics, Vol. 6, No. 1-3, 2007, pp. 329-333. doi:10.1007/s10825-006-0138-y
[5] H. Scheel, S. Reich and C. Thomsen, “Electronic Band Structure of High-Index Silicon Nanowires,” Physica Status Solid (b), Vol. 242, No. 12, 2005, pp. 1-6.
[6] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee and S. T. Lee, “Silicon Nanowires as Chemical Sensors,” Chemical Physics Letters, Vol. 369, No. 1-2, 2003, pp. 220-224. doi:10.1016/S0009-2614(02)02008-0
[7] D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong and S. T. Lee, “Small-Diameter Silicon Nanowire Surfaces,” Science, Vol. 299, No. 5614, 2003, pp. 1874-1877. doi:10.1126/science.1080313
[8] W. Park, G. Zheng, X. Jiang, B. Tian and C. M. Lieber, “Controlled Synthesis of Millimeter-Long Silicon Nanowires with Uniform Electronic Properties,” Nano Letters, Vol. 8, No. 9, 2008, pp. 3004-3009. doi:10.1021/nl802063q
[9] Y. Cui, L. J. Lauhon, M. S. Gudikesen, J. Wang and C. M. Lieber, “Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires,” Applied Physics Letters, Vol. 78, No. 15, 2001, pp. 2214-2216. doi:10.1063/1.1363692
[10] J. Yan, L. Yang and M. Y. Chou, “Size and Orientation Dependence in the Electronic Properties of Silicon Nanowires,” Physical Review B, Vol. 76, No. 11, 2007, Article ID: 115319. doi:10.1103/PhysRevB.76.115319
[11] I. Zardo, L. Yu, S. Conesa-Boj, S. Estrade, P. J. Alet, J. Rossler, M. Frimmer, P. R. Cabarrocas, F. Peiro, J. Arbiol, J. R. Moreante and A. F. Morral, “Gallium Assisted Plasma Enhanced Chemical Vapor Deposition of Silicon Nanowires,” Nanotechnology, Vol. 20, No. 15, 2009, pp. 155602-155610. doi:10.1088/0957-4484/20/15/155602
[12] S. A. Fortuna and X. Li, “Metal-Catalyzed Semiconductornanowires: A Review on the Control of Growth Directions,” Semiconductor Science and Technology, Vol. 25, No. 2, 2010, pp. 024005-024020. doi:10.1088/0268-1242/25/2/024005
[13] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell and C. M. Lieber, “Controlled Growth and Structures of Molecular-Scale Silicon Nanowires,” Nano Letters, Vol. 4, No. 3, 2004, pp. 433-436. doi:10.1021/nl035162i
[14] Y. Wu, H. Yan and P. Yang, “Semiconductor Nanowire Array: Potential Substrates for Photocatalysis and Photovoltaics,” Topics in Catalysis, Vol. 19, No. 2, 2002, pp. 197-201. doi:10.1023/A:1015260008046
[15] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, X. Zhang, W. Lee, N. Geyer and U. Gosele, “Ordered Arrays of Vertically Aligned [110] Silicon Nanowires by Suppressing the Crystallograpgically Preferred <100> Etching Directions,” Nano Letters, Vol. 9, No. 7, 2009, pp. 2519-2525. doi:10.1021/nl803558n
[16] X. L. Ma, Y. L. Zhu and Z. Zhang, “Growth Orientation of One-Dimensional Silicon Nanowires Prepared by Thermal Evaporation,” Philosophical Magazine Letters, Vol. 82, No. 8, 2002, pp. 461-468. doi:10.1080/09500830210144391
[17] H. Yorikawa, H. Uchida and S. Muramatsu, “Energy Gap of Nanoscale Si Rods,” Journal of Applied Physics, Vol. 79, No. 7, 1996, pp. 3619-3621. doi:10.1063/1.361416
[18] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, “Control of the Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science, Vol. 287, No. 5457, 2000, pp. 1471-1473. doi:10.1126/science.287.5457.1471
[19] W. Ong, E. S. Tok, H. Johll and H. C. Kang, “Self-Assembly, Dynamics and Structure of Si Magic Clusters,” Physical Review B, Vol. 79, No. 23, 2009, Article ID: 235439. doi:10.1103/PhysRevB.79.235439
[20] T. Sekiguchi, S. Yoshida and K. M. Itoh, “Self-Assembly of Parallel Atomic Wires and Periodic Clusters of Silicon on a Vicinal Si(111) Surface,” Physical Review Letters, Vol. 95, No. 10, 2005, Article ID: 106101. doi:10.1103/PhysRevLett.95.106101
[21] Z. Jing and J. L. Whitten, “Ab Initio Studies of Si(100) Surface Reconstruction,” Surface Science, Vol. 274, No. 1, 1992, pp. 106-112. doi:10.1016/0039-6028(92)90104-E

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.