Catalytic Activity of Amino Acids-Metal Complexes in Oxidation Reactions


Studies were carried out to determine the activity of complexes of the essential amino acids DL-Lysine and L-Methionine with heavy metals in the oxidation of cyclohexene with tert-butylhydroperoxide in toluene at 80°C. All complexes were prepared through interaction of metal ions and DL-Lysine and L-Methionine at room temperature in aqueous solutions. Only the complexes of Mo and W were obtained from acidic aqueous solution. These complexes were characterized by FT-IR, Moessbauer spectroscopy and EPR analysis. The products of the oxidation reactions were identified by GC/MS analysis. The complexes of Mo and V showed the best activity in the epoxidation reaction of cyclohexene in comparison with other complexes, such as Ni, Mn, Zn, Co, Cu, Cr, Fe and W. Using semi-empirical quantum-chemistry methods, the full energy of the Mo complexes was calculated and their probable structure is presented.

Share and Cite:

K. Vassilev, S. Turmanova, E. Ivanova and V. Trifonova, "Catalytic Activity of Amino Acids-Metal Complexes in Oxidation Reactions," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 2A, 2013, pp. 28-36. doi: 10.4236/jbnb.2013.42A004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. A. Jorgensen, “Transition-Metal-Catalyzed Epoxidations,” Chemical Reviews, Vol. 89, No. 3, 1989, pp. 431458. doi:10.1021/cr00093a001
[2] Q. H. Xia, H. Ge, C. Ye, Z. Liu and K. Su, “Advances in Homogegeneous and Heterogeneous Catalytic Asymmetric Epoxidation,” Chemical Reviews, Vol. 105, No. 5, 2005, pp. 1603-1662. doi:10.1021/cr0406458
[3] V. B. Valodkar, G. Tembe, R. Ram and H. Rama, “Catalytic Asymmetric Epoxidation of Unfunctionalized Olefins by Supported Cu(II)-Amino Acid Complexes,” Catalysis Letters, Vol. 90, No. 1-2, 2003, pp. 91-94. doi:10.1023/A:1025828629486
[4] V. B. Valodkar, G. Tembe, M. Ravindranathan and H. Rama, “Catalytic Epoxidation of Olefins by PolymerAnchored Amino Acid Ruthenium Complexes,” Reactive and Functional Polymers, Vol. 56, No. 1, 2003, pp. 1-15. doi:10.1016/S1381-5148(03)00048-8
[5] K. Kamata, K. Yonehara, Y. Sumida, K. Hirata, S. Nojima and N. Mizuno, “Efficient Heterogeneous Epoxidation of Alkenes by a Supported Tungsten Oxide Catalyst,” Angewandte Chemie International Edition, Vol. 50, No. 50, 2011, pp. 12062-12066. doi:10.1002/anie.201106064
[6] M. Abrantes, F. Paz, A. Valente, C. Pereira, S. Gago, A. Rodriges, J. Klinowski, M. Pillinger and I. Goncalves, “Aminoacid-Functionalized Cyclopentadienyl Molybdenum Tricarbonyl Complex and Its Use in Catalytic Olefin Epoxidation,” Journal of Organometallic Chemistry, Vol. 694, No. 12, 2009, pp. 1826-1833. doi:10.1016/j.jorganchem.2009.01.012
[7] M. Masteri-Farahani, “New Molybdenum Epoxidation Catalyst Derived from Nanoporous MCM-41 Supported Glycine Schiff-Base,” Journal of Nanostructures, Vol. 2, No. 1, 2012, pp. 43-50.
[8] C. A. McAuliffe, J. Quagliano and L. Vallarino, “Metal Complexes of the Amino Acid DL-Methionine,” Inorganic Chemistry, Vol. 5, No. 11, 1966, pp. 1996-2003. doi:10.1021/ic50045a034
[9] V. Vujacic, J. Savic, S. Sovilj, K. Szecsenyi, N. Todorovic, M. Petkovic and V. Vasic, “Mechnism of Complex Formation between [AuCl4]¯ and L-Methionine,” Polyhedron, Vol. 28, No. 3, 2009, pp. 593-599. doi:10.1016/j.poly.2008.11.045
[10] B. K. Singh, H. Rajour and A. Prakash, “Synthesis, Characterization and Biological Activity of Transition Metal Complexes with Schiff Bases Derived from 2-Nitrobenzaldehyde with Glycine and Methionine,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 94, 2012, pp. 143-151. doi:10.1016/j.saa.2012.03.077
[11] M. H. Khodabandeh, H. Reisi, K. Zare and M. Zahedi, “A Theoretical Elucidation of Coordination Properties of Histidine and Lysine to Mn(II),” International Journal of Mass Spectrometry, Vol. 313, No. 1, 2012, pp. 47-57. doi:10.1016/j.ijms.2011.12.019
[12] Y. Z. Hao, Z. Li and J. Tian, “Synthesis, Chracteristics and Catalytic Activity of Water-Soluble [Pd(lysine·HCl)(Cl)2] Complex as Hydrogenation Catalyst,” Journal of Molecular Catalysis, A: Chemical, Vol. 265, No. 1, 2007, pp. 258-267. doi:10.1016/j.molcata.2006.09.045
[13] O. Cozar, I. Bratu, L. Szabo, I. Cozar, V. Chic and L. David, “IR and ESR Study of Copper(II) Complexes with 15N-Labelled Lysine and Ornithine,” Journal of Molecular Structure, Vol. 993, No. 1-3, 2011, pp. 397-403. doi:10.1016/j.molstruc.2011.02.001
[14] M. Dimitrova, S. Turmanova and K. Vassilev, “Complexes of Glutathione with Heavy Metals as Catalysts for Oxidation,” Reaction Kinetics, Mechanisms and Catalysis, Vol. 9, No. 1, 2010, pp. 69-78.
[15] K. Vassilev, M. Dimitrova, S. Turmanova and R. Milina, “Catalytic Activity of Histidine-Metal Complexes in Oxidation Reaction,” Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, Vol. 43, No. 3, 2013, pp. 243-249. doi:10.1080/15533174.2012.740713
[16] S. Turmanova and K. Vassilev, “Molybdenum Complexes: Structure, Properties and Applications,” In: M. Ortiz and T. Herrera, Eds., Molybdenum: Characteristics, Production and Applications, Nova Science Publishers, New York, 2012, pp. 77-116.
[17] H. A. Kuska and P. Yang, “Effects of Substituents on the Spectroscopic Properties of Tetradentate Ligand-Oxovanadium(IV) Complexes,” Inorganic Chemistry, Vol. 16, No. 8, 1977, pp. 1938-1941. doi:10.1021/ic50174a021
[18] O. A. Rajan and A. Chakravorty, “Molybdenum Complexes. I. Acceptor Behavior and Related Properties of Mo(VI)O2(Tridentate) Systems,” Inorganic Chemistry, Vol. 20, No. 3, 1981, pp. 660-664. doi:10.1021/ic50217a005
[19] F. E. Dickson, C. J. Kunesh, E. L. McGinnis and L. Petrakis, “Use of Electron Spin Resonance to Characterize the Vanadium(IV)-Sulfur Species in Petroleum,” Analytical Chemistry, Vol. 44, No. 6, 1972, pp. 978-981. doi:10.1021/ac60314a009
[20] M. A. Porai-Koshits and A. O. Atovmian, “Crystalo Chemistry and Stereochemistry of Coordination Compounds of Molybdenum,” Nauka, Moscow, 1974, pp. 1-229.
[21] A. A. Levim and P. N. Dyachkov, “Electronic Structure, Geometry, Isomerism and Transformations of Heteroligand Molecules,” Nauka, Moscow, 1990, pp. 1-256.
[22] R. A. Sheldon, “Synthetic and Mechanistic Aspects of Metal-Catalysed Epoxidations with Hydroperoxides,” Journal of Molecular Catalysis, Vol. 7, No. 1, 1980, pp. 107126. doi:10.1016/0304-5102(80)85010-3
[23] H. Weiner, A. Trovarelli and R. Finke, “Expanded Product, Plus Kinetic and Mechanistic, Studies of Polyoxoanion-Based Cyclohexene Oxidation Catalysis: The Dedection of 70 Products at Higher Conversion Leading to a Simple, Product-Based Test for the Presence of Olefin Autoxidation,” Journal of Molecular Catalysis, A. Chemical, Vol. 191, No. 2, 2003, pp. 217-252. doi:10.1016/S1381-1169(02)00344-8

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.