Microwave Synthesis, Characterization and Photocatalytic Properties of SnO2 Nanoparticles


In the present endeavour, SnO2 nanoparticles (NPs) were synthesized using microwave method. Synthesized SnO2 NPs were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrscopy (EDS) to find their structure, morphology and elemental composition. SnO2 NPs were of spherical morphology having crystallite size of 35.42 nm as obtained from Scherrer’s formula using most intense peak of XRD. Synthesized NPs were used for photodegradation of melthylene blue (MB) dye under UV light. The SnO2 NPs ware found to have photodegradation efficiency and apparent rate constant of 55.97% and 2.149 × 10_2 respectively.

Share and Cite:

Singh, A. and Nakate, U. (2013) Microwave Synthesis, Characterization and Photocatalytic Properties of SnO2 Nanoparticles. Advances in Nanoparticles, 2, 66-70. doi: 10.4236/anp.2013.21012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] N. G. Deshpande, Y. G. Gudage, R. Sharma, J. C. Vyas, J. B. Kim and Y. P. Lee, “Studies on Tin Oxide-intercalated Polyaniline Nanocomposite for Ammonia Gas Sensing Applications,” Sensors and Actuators B: Chemical, Vol. 138, No. 1, 2009, pp. 76-84. doi:10.1016/j.snb.2009.02.012
[2] V. Krivetskiy, A. Ponzoni, E. Comini, S. Badalyan, M. Rumyantseva and A. Gaskov, “Selectivity Modification of SnO2-Based Materials for Gas Sensor Arrays,” Electroanalysis, Vol. 22, No. 23, 2010, pp. 2809-2816. doi:10.1002/elan.201000277
[3] H. J. Snaith and C. Ducati, “SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency,” Nano Letters, Vol. 10, No. 4, 2010, pp 1259-1265. doi:10.1021/nl903809r
[4] J. C. Manifacier, “Thin Metallic Oxides as Transparent Conductors,” Thin Solid Films, Vol. 90, No. 3, 1982, pp. 297-308. doi:10.1016/0040-6090(82)90381-9
[5] Y. Hao, W. Wu and L. L. Xie, “Preparation and Photocatalytic Properties of Nanometer SnO2,” 2nd International on Chemical, Biological and Environmental Engineering (ICBEE), Cairo, 2-4 November 2010, pp. 96-100.
[6] Q.-Q. Wang, B.-Z. Lin, B.-H. Xu, X.-L. Li, Z.-J. Chen and X.-T. Pian, “Preparation and Photocatalytic Properties of Mesoporous SnO2-Hexaniobate Layered Nanocomposite,” Microporous and Mesoporous Materials, Vol. 130, No. 1-3, 2010, pp. 344-351. doi:10.1016/j.micromeso.2009.11.033
[7] L. H. Zhang, P. J. Li, Z. Q. Gong and X. M. Li, “Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbons on Soil Surfaces Using TiO2 Under UV Light,” Journal of Hazardous Materials, Vol. 158, No. 2-3, 2008, pp. 478-484. doi:10.1016/j.jhazmat.2008.01.119
[8] A. K. Singh, S. B. Patil and S. S. Multani, “ZnO Nanorods and Nanopolypods Synthesized Using Microwave Assisted Wet Chemical and Thermal Evaporation Method,” Indian Journal of Pure & Applied Physics, Vol. 49, 2011, pp. 270-276.
[9] A. K. Singh and V. S. Raykar, “Microwave Synthesis of Silver Nanofluids Withpolyvinylpyrrolidone (PVP) and Their Transport Properties,” Colloid & Polymer Science, Vol. 286, No. 14-15, 2008, pp. 1667-1673. doi:10.1007/s00396-008-1932-9
[10] R. S. Varma, “Greener Approach to Nanomaterials and Their Sustainable Applications,” Current Opinion in Chemical Engineering, Vol. 1, No. 1, 2011, pp. 1-6.
[11] C. M. Sarah, S. K. Pillai, S. Sinha Ray, K. Jalama and R. W. M. Krause, “Recent Trends in the Microwave-As sisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications,” Journal of Nanomaterials, 2012, Article ID: 691503.
[12] M. Nüchter, B. Ondruschka, W. Bonrath and A. Gum, “Microwave Assisted Synthesis—A Critical Technology Overview,” Green Chemistry, Vol. 6, No. 3, 2004, pp. 128 141. doi:10.1039/b310502d
[13] S. Das, A. K. Mukhopadhyay, S. Datta and D. Basu, “Prospects of Microwave Processing: An Overview,” Bulletin of Materials Science, Vol. 32, No. 1, 2009, pp. 1-13. doi:10.1007/s12034-009-0001-4
[14] L. Perreux and A. Loupy, “A Tentative Rationalization of Microwave Effects in Organic Synthesis According to the Reaction Medium, and Mechanistic Considerations,” Tetrahedron, Vol. 57, No. 45, 2001, pp. 9199-9223. doi:10.1016/S0040-4020(01)00905-X
[15] H. Kumazawa, M. Inoue and T. Kasuya, “Photocatalytic Degradation of Volatile and Nonvolatile Organic Compounds on Titanium Dioxide Particles Using Fluidized Beds,” Industrial & Engineering Chemistry Research, Vol. 42, No. 14, 2003, pp. 3237-3244. doi:10.1021/ie020723m
[16] D. Hornero-Mendez and M. I. Minguez-Mosquera, “Rapid Spectrophotometric Determination of Red and Yellow Isochromic Carotenoid Fractions in Paprika and Red Pepper Oleoresins,” Journal of Agricultural and Food Chemistry, Vol. 49, No. 8, 2001, pp. 3584-3588. doi:10.1021/jf010400l
[17] J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu and W. K. Ho, “The Effect of Calcination Temperature on the Surface Microstructure and Photocatalytic Activity of TiO2 Thin Films Prepared by Liquid Phase Deposition,” Journal of Physical Chemistry B, Vol. 107, No. 50, 2003, pp. 13871-13879. doi:10.1021/jp036158y
[18] S. Ghasemi, S. Rahimnejad, S. R. Setayesh, S. Rohani and M. R. Gholami, “Transition Metal Ions Effect on the Properties and Photocatalytic Activity of Nanocrystalline TiO2 Prepared in an Ionic Liquid,” Journal of Hazardous Materials, Vol. 172, No. 2-3, 2009, pp. 1573-1578. doi:10.1016/j.jhazmat.2009.08.029
[19] B. D. Cullity, “Elements of X-Ray Diffraction,” Addison Wesley, Reading, 2005.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.