Recent Advances in Detection of Ochratoxin-A


Ochratoxin-A[7-(L-β-phenylalanylcarbonyl)-carboxyl-5-chloro-8-hydroxy-3,4-dihydro-3R-methyl-isocumarin, OTA] is a common food contaminant mycotoxin that enters the human body through the consumption of improperly stored food products. Upon ingestion, it leads to immuno-suppression and immuno-toxicity. OTA has been known to produce nephrotoxic, teratogenic, and carcinogenic activity (via oxidative DNA damage) in several species. This review introduces potentials of electrochemical biosensor to provide breakthroughs in OTA detection through improved selectivity and sensitivity and also the current approaches for detecting OTA in food products.

Share and Cite:

Kaushik, A., Arya, S., Vasudev, A. and Bhansali, S. (2013) Recent Advances in Detection of Ochratoxin-A. Open Journal of Applied Biosensor, 2, 1-11. doi: 10.4236/ojab.2013.21001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. L. Bryden, “Mycotoxin Contamination of the Feed Supply Chain: Implications for Animal Productivity and Feed Security,” Animal Feed Science and Technology, Vol. 173, No. 1, 2012, pp. 134-158. doi:10.1016/j.anifeedsci.2011.12.014
[2] S. Brase, A. Encinas, J. Keck and C. F. Nising, “Chemistry and Biology of Mycotoxins and Related Fungal Metabolites,” Chemical Reviews, Vol. 109, No. 9, 2009, pp. 3903-3990.
[3] R. Krska and A. Molinelli, “Mycotoxin Analysis: State- of-the-Art and Future Trends,” Analytical and Bioanalytical Chemistry, Vol. 387, No. 1, 2007, pp. 145-148. doi:10.1007/s00216-006-0797-3
[4] B. Prieto-Simón, T. Noguer and M. Campàs, “Emerging Biotools for Assessment of Mycotoxins in the Past Decade,” TrAC Trends in Analytical Chemistry, Vol. 26, No. 7, 2007, pp. 689-702. doi:10.1016/j.trac.2007.05.012
[5] L. Yotova, I. Grabchev, R. Betcheva and D. Marinkova, “Smart Biosensors for Determination of Mycotoxines,” In: M. V. Magni, Ed., Detection of Bacteria, Viruses, Parasites and Fungi, Springer, Heilderberg, 2010, pp. 389-414.
[6] S. Quintela, M. C. Villarán, I. L. de Armentia and E. Elejalde, “Ochratoxin A Removal in Wine: A Review,” Food Control, Vol. 30, No. 2, 2013, pp. 439-445.
[7] L. Covarelli, G. Beccari, A. Marini and L. Tosi, “A Review on the Occurrence and Control of Ochratoxigenic Fungal Species and Ochratoxin A in Dehydrated Grapes, Non-Fortified Dessert Wines and Dried Vine Fruit in the Mediterranean Area,” Food Control, Vol. 26, No. 2, 2012, pp. 347-356. doi:10.1016/j.foodcont.2012.01.044
[8] M. F. Terra, G. Prado, G. E. Pereira, H. J. Ematné and L. R. Batista, “Detection of Ochratoxin A in Tropical Wine and Grape Juice from Brazil,” Journal of the Science of Food and Agriculture, Vol. 93, No. 4, 2013, pp. 890-894.
[9] F. Karbancioglu-Güler and D. Heperkan, “Natural Occurrence of Ochratoxin A in Dried Figs,” Analytica Chimica Acta, Vol. 617, No. 1-2, 2008, pp. 32-36. doi:10.1016/j.aca.2008.01.009
[10] D. Ringot, A. Chango, Y.-J. Schneider and Y. Larondelle, “Toxicokinetics and Toxicodynamics of Ochratoxin A, an Update,” Chemico-Biological Interactions, Vol. 159, No. 1, 2006, pp. 18-46. doi:10.1016/j.cbi.2005.10.106
[11] R. C. Gupta, “Veterinary Toxicology: Basic and Clinical Principles,” Elsevier Science, 2007. doi:10.5005/jp/books/10078
[12] C. Zaied, S. Abid, L. Zorgui, C. Bouaziz, S. Chouchane, M. Jomaa, et al., “Natural Occurrence of Ochratoxin A in Tunisian Cereals,” Food Control, Vol. 20, No. 3, 2009, pp. 218-222. doi:10.1016/j.foodcont.2008.05.002
[13] S. Amézqueta, E. González-Penas, M. Murillo-Arbizu and A. L. de Cerain, “Ochratoxin A Decontamination: A Review,” Food Control, Vol. 20, No. 4, 2009, pp. 326-333. doi:10.1016/j.foodcont.2008.05.017
[14] S. Abid, W. Hassen, A. Achour, H. Skhiri, K. Maaroufi, F. Ellouz, et al., “Ochratoxin a and Human Chronic Nephropathy in Tunisia: Is the Situation Endemic?” Human & Experimental Toxicology, Vol. 22, No. 2, 2003, pp. 77- 84. doi:10.1191/0960327103ht328oa
[15] P. B. Wangikar, P. Dwivedi, N. Sinha, A. K. Sharma and A. G. Telang, “Teratogenic Effects in Rabbits of Simultaneous Exposure to Ochratoxin A and Aflatoxin B1 with Special Reference to Microscopic Effects,” Toxicology, Vol. 215, No. 1-2, 2005, pp. 37-47. doi:10.1016/j.tox.2005.06.022
[16] L. álvarez, A. G. Gil, O. Ezpeleta, J. A. Garcia-Jalón and A. L. de Cerain, “Immunotoxic Effects of Ochratoxin A in Wistar Rats after Oral Administration,” Food and Chemical Toxicology, Vol. 42, No. 5, 2004, pp. 825-834. doi:10.1016/j.fct.2004.01.005
[17] E. E. Creppy, “Update of Survey, Regulation and Toxic Effects of Mycotoxins in Europe,” Toxicology Letters, Vol. 127, No. 1-3, 2002, pp. 19-28. doi:10.1016/S0378-4274(01)00479-9
[18] S. Lebrun and W. Follmann, “Detection of Ochratoxin A-Induced DNA Damage in MDCK Cells by Alkaline Single Cell Gel Electrophoresis (Comet Assay),” Archives of Toxicology, Vol. 75, No. 11-12, 2002, pp. 734-741. doi:10.1007/s00204-001-0291-9
[19] D. Flajs, A. M. Domijan, D. Ivic, B. Cvjetkovic and M. Peraica, “ELISA and HPLC Analysis of Ochratoxin A in Red Wines of Croatia,” Food Control, Vol. 20, No. 6, 2009, pp. 590-592. doi:10.1016/j.foodcont.2008.08.021
[20] P. Verger, E. Counil, J. Tressou and J. C. Leblanc, “Some Recent Advances in Modelling Dietary Exposure to Ochratoxin A,” Food Additives and Contaminants, Vol. 22, Suppl. 1, 2005, pp. 94-98. doi:10.1080/02652030500410281
[21] A. Pittet and D. Royer, “Rapid, Low Cost Thin-Layer Chromatographic Screening Method for the Detection of Ochratoxin A in Green Coffee at a Control Level of 10 μg/kg,” Journal of Agricultural and Food Chemistry, Vol. 50, No. 2, 2001, pp. 243-247. doi:10.1021/jf010867w
[22] P. Varelis, S.-L. L. Leong, A. Hocking and G. Giannikopoulos, “Quantitative Analysis of Ochratoxin A in Wine and Beer Using Solid Phase Extraction and High Performance Liquid Chromatography-Fluorescence Detection,” Food Additives and Contaminants, Vol. 23, No. 12, 2006, pp. 1308-1315. doi:10.1080/02652030600838258
[23] M. Reinsch, A. Topfer, A. Lehmann, I. Nehls and U. Panne, “Determination of Ochratoxin A in Beer by LC- MS/MS Ion Trap Detection,” Food Chemistry, Vol. 100, No. 1, 2007, pp. 312-317. doi:10.1016/j.foodchem.2005.10.005
[24] C. Juan, C. M. Lino, A. Pena, J. C. Moltó, J. Manes and I. Silveira, “Determination of Ochratoxin A in Maize Bread Samples by LC with Fluorescence Detection,” Talanta, Vol. 73, No. 2, 2007, pp. 246-250. doi:10.1016/j.talanta.2007.03.029
[25] D Caputo, G De Cesare, C Fanelli, A Nascetti, A Ricelli, R Scipinotti, Innovative Detection System of Ochratoxin A by Thin Film Photodiodes, Sensors, 7(2007) 1317-22. doi:10.3390/s7071317
[26] M. V. Selma, P. V. Martínez-Culebras, R. Aznar, “Real- Time PCR Based Procedures for Detection and Quantification of Aspergillus carbonarius in Wine Grapes,” International Journal of Food Microbiology, Vol. 122, No. 1-2, 2008, pp. 126-134. doi:10.1016/j.ijfoodmicro.2007.11.049
[27] R. Ghali, K. Hmaissia-khlifa, H. Ghorbel, K. Maaroufi and A. Hedili, “HPLC Determination of Ochratoxin A in High Consumption Tunisian Foods,” Food Control, Vol. 20, No. 8, 2009, pp. 716-720. doi:10.1016/j.foodcont.2008.09.004
[28] W. Lai, D. Y. C. Fung, X. Yang, L. Renrong and Y. Xiong, “Development of a Colloidal Gold Strip for Rapid Detection of Ochratoxin A with Mimotope Peptide,” Food Control, Vol. 20, No. 9, 2009, pp. 791-795. doi:10.1016/j.foodcont.2008.10.007
[29] T. Hianik, “Biosensors for Detection of Ochratoxin A Portable Chemical Sensors,” In: D. P. Nikolelis, Ed., Portable Chemical Sensors: Weapons against Bioterrorism, Springer, Heilderberg, 2012, pp. 193-211.
[30] M. Campas, D. Garibo and B. Prieto-Simon, “Novel Nanobiotechnological Concepts in Electrochemical Biosensors for the Analysis of Toxins,” Analyst, Vol. 137, No. 5, 2012, pp. 1055-1067. doi:10.1039/c2an15736e
[31] T. McGrath, C. Elliott and T. Fodey, “Biosensors for the Analysis of Microbiological and Chemical Contaminants in Food,” Analytical and Bioanalytical Chemistry, Vol. 403, No. 1, 2012, pp. 75-92. doi:10.1007/s00216-011-5685-9
[32] T. Li, E.-J. Jo and M.-G. Kim, “A Label-Free Fluorescence Immunoassay System for the Sensitive Detection of the Mycotoxin, Ochratoxin A,” Chemical Communications, Vol. 48, No. 17, 2012, pp. 2304-2306. doi:10.1039/c2cc17088d
[33] W. C. Tsai and C. K. Hsieh, “QCM‐Based Immunosensor for the Determination of Ochratoxin A,” Analytical Letters, Vol. 40, No. 10, 2007, pp. 1979-1991. doi:10.1080/00032710701484509
[34] N. Adányi, I. A. Levkovets, S. Rodriguez-Gil, A. Ronald, M. Váradi and I. Szendro, “Development of Immunosensor Based on OWLS Technique for Determining Aflatoxin B1 and Ochratoxin A,” Biosensors and Bioelectronics, Vol. 22, No. 6, 2007, pp. 797-802. doi:10.1016/j.bios.2006.02.015
[35] B. Prieto-Simón, M. Campàs, J.-L. Marty and T. Noguer, “Novel Highly-Performing Immunosensor-Based Strategy for Ochratoxin A Detection in Wine Samples,” Biosensors and Bioelectronics, Vol. 23, No. 7, 2008, pp. 995-1002. doi:10.1016/j.bios.2007.10.002
[36] A. A. Ansari, A. Kaushik, P. R. Solanki and B. D. Malhotra, “Nanostructured Zinc Oxide Platform for Mycotoxin Detection,” Bioelectrochemistry, Vol. 77, No. 2, 2010, pp. 75-81. doi:10.1016/j.bioelechem.2009.06.014
[37] A. Kaushik, P. R. Solanki, A. A. Ansari, S. Ahmad and B. D. Malhotra, “A Nanostructured Cerium Oxide Film- Based Immunosensor for Mycotoxin Detection,” Nanotechnology, Vol. 20, No. 5, 2009, Article ID: 055105. doi:10.1088/0957-4484/20/5/055105
[38] A.-E. Radi, X. Munoz-Berbel, V. Lates and J.-L. Marty, “Label-Free Impedimetric Immunosensor for Sensitive Detection of Ochratoxin A,” Biosensors and Bioelectronics, Vol. 24, No. 7, 2009, pp. 1888-1892. doi:10.1016/j.bios.2008.09.021
[39] A.-E. Radi, X. Munoz-Berbel, M. Cortina-Puig and J.-L. Marty, “An Electrochemical Immunosensor for Ochratoxin A Based on Immobilization of Antibodies on Diazonium- Functionalized Gold Electrode,” Electrochimica Acta, Vol. 54, No. 8, 2009, pp. 2180-2184. doi:10.1016/j.electacta.2008.10.013
[40] C. Yang, V. Lates, B. Prieto-Simón, J.-L. Marty and X. R. Yang, “Aptamer-DNAzyme Hairpins for Biosensing of Ochratoxin A,” Biosensors and Bioelectronics, Vol. 32, No. 1, 2012, pp. 208-212. doi:10.1016/j.bios.2011.12.011
[41] G. Castillo, I. Lamberti, L. Mosiello and T. Hianik, “High-Sensitive Impedimetric Aptasensor for Detection Ochratoxin A in Food Sensors and Microsystems,” In: A. D’Amico, C. D. Di Natale, L. Mosiello and G. Zappa Eds., Sensors and Microsystems. Lecture Notes in Electrical Engineering, Springer, Heilderberg, 2012, pp. 31-35.
[42] G. Castillo, I. Lamberti, L. Mosiello and T. Hianik, “Impedimetric DNA Aptasensor for Sensitive Detection of Ochratoxin A in Food,” Electroanalysis, Vol. 24, No. 3, 2012, pp. 512-520. doi:10.1002/elan.201100485
[43] J. Vidal, P. Duato, L. Bonel and J. Castillo, “Use of Polyclonal Antibodies to Ochratoxin A with a Quartz- Crystal Microbalance for Developing Real-Time Mycotoxin Piezoelectric Immunosensors,” Analytical and Bioanalytical Chemistry, Vol. 394, No. 2, 2009, pp. 575-582. doi:10.1007/s00216-009-2736-6
[44] H. Cheap, M. Sanchez, V. Vivier, H. Perrot and J. L. Marty, “Ochratoxin A Detection by an Immunosensor Using Impedance Spectroscopy Coupled with Quartz Crystal Microbalance,” Sensor Letters, Vol. 9, No. 6, 2011, pp. 2312-2315. doi:10.1166/sl.2011.1806
[45] X.-P. Liu, Y.-J. Deng, X.-Y. Jin, L.-G. Chen, J.-H. Jiang, G.-L. Shen, et al., “Ultrasensitive Electrochemical Immunosensor for Ochratoxin A Using Gold Colloid- Mediated Hapten Immobilization,” Analytical Biochemistry, Vol. 389, No. 1, 2009, pp. 63-68. doi:10.1016/j.ab.2009.03.019
[46] N. Prabhakar, Z. Matharu and B. D. Malhotra, “Polyaniline Langmuir-Blodgett Film Based Aptasensor for Ochratoxin A Detection,” Biosensors and Bioelectronics, Vol. 26, No. 10, 2011, pp. 4006-4011. doi:10.1016/j.bios.2011.03.014
[47] L.-G. Zamfir, I. Geana, S. Bourigua, L. Rotariu, C. Bala, A. Errachid, et al., “Highly Sensitive Label-Free Immunosensor for Ochratoxin A Based on Functionalized Magnetic Nanoparticles and EIS/SPR Detection,” Sensors and Actuators B: Chemical, Vol. 159, No. 1, 2011, pp. 178-184. doi:10.1016/j.snb.2011.06.069
[48] P. R. Solanki, A. Kaushik, T. Manaka, M. K. Pandey, M. Iwamoto, V. V. Agrawal, et al., “Self-Assembled Monolayer Based Impedimetric Platform for Food Borne Mycotoxin Detection,” Nanoscale, Vol. 2, No. 12, 2010, pp. 2811-2817. doi:10.1039/c0nr00289e
[49] H. Ju, X. Zhang and J. Wang, “Nanomaterials for Immunosensors and Immunoassays NanoBiosensing,” Springer, New York, 2011, pp. 425-452.
[50] P. R. Solanki, A. Kaushik, V. V. Agrawal and B. D. Malhotra, “Nanostructured Metal Oxide-Based Biosensors,” NPG Asia Materials, Vol. 3, No. 1, 2011, pp. 17-24. doi:10.1038/asiamat.2010.137
[51] A. Anees, M. Ansari, M. S. A. Alsalhi and A. S. Aldwayyan, “Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors,” In: P. A. Serra, Eds., Biosensors, InTech, New York, 2010, pp. 23-46.
[52] A. G. Mamalis, “Recent Advances in Nanotechnology,” Journal of Materials Processing Technology, Vol. 181, No. 1-3, 2007, pp. 52-58. doi:10.1016/j.jmatprotec.2006.03.052
[53] P. Pandey, M. Datta and B. D. Malhotra, “Prospects of Nanomaterials in Biosensors,” Analytical Letters, Vol. 41, No. 2, 2008, pp. 159-209. doi:10.1080/00032710701792620
[54] B. D. Malhotra, A. Chaubey and S. P. Singh, “Prospects of Conducting Polymers in Biosensors,” Analytica Chimica Acta, Vol. 578, No. 1, 2006, pp. 59-74. doi:10.1016/j.aca.2006.04.055
[55] C. Dhand, M. Das, M. Datta and B. D. Malhotra, “Recent Advances in Polyaniline Based Biosensors,” Biosensors and Bioelectronics, Vol. 26, No. 6, 2011, pp. 2811-2821. doi:10.1016/j.bios.2010.10.017
[56] Rajesh, T. Ahuja and D. Kumar, “Recent Progress in the Development of Nano-Structured Conducting Polymers/ Nanocomposites for Sensor Applications,” Sensors and Actuators B: Chemical, Vol. 136, No. 1, 2009, pp. 275- 286. doi:10.1016/j.snb.2008.09.014
[57] T. Ahuja, I. A. Mir, D. Kumar and Rajesh, “Biomolecular Immobilization on Conducting Polymers for Biosensing Applications,” Biomaterials, Vol. 28, No. 5, 2007, pp. 791-805. doi:10.1016/j.biomaterials.2006.09.046
[58] A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, et al., “Iron Oxide Nanoparticles-Chitosan Composite Based Glucose Biosensor,” Biosensors and Bioelectronics, Vol. 24, No. 4, 2008, pp. 676-683. doi:10.1016/j.bios.2008.06.032
[59] A. Kaushik, P. R. Solanki, A. A. Ansari, B. D. Malhotra and S. Ahmad, “Iron Oxide-Chitosan Hybrid Nanobiocomposite Based Nucleic Acid Sensor for Pyrethroid Detection,” Biochemical Engineering Journal, Vol. 46, No. 2, 2009, pp. 132-140. doi:10.1016/j.bej.2009.04.021
[60] A. Kaushik, P. R. Solanki, A. A. Ansari, G. Sumana, S. Ahmad and B. D. Malhotra, “Iron Oxide-Chitosan Nanobiocomposite for Urea Sensor,” Sensors and Actuators B: Chemical, Vol. 138, No. 2, 2009, pp. 572-580. doi:10.1016/j.snb.2009.02.005
[61] A. Kaushik, P. R. Solanki, M. K. Pandey, S. Ahmad and B. D. Malhotra, “Cerium Oxide-Chitosan Based Nanobiocomposite for Food Borne Mycotoxin Detection,” Applied Physics Letters, Vol. 95, No. 17, 2009, Article ID: 173703. doi:10.1063/1.3249586
[62] A. Kaushik, P. R. Solanki, M. K. Pandey, K. Kaneto, S. Ahmad and B. D. Malhotra, “Carbon Nanotubes—Chitosan Nanobiocomposite for Immunosensor,” Thin Solid Films, Vol. 519, No. 3, 2010, pp. 1160-1166. doi:10.1016/j.tsf.2010.08.062
[63] A. Kaushik, P. R. Solanki, K. N. Sood, S. Ahmad and B. D. Malhotra, “Fumed Silica Nanoparticles-Chitosan Nanobiocomposite for Ochratoxin-A Detection,” Electrochemistry Communications, Vol. 11, No. 10, 2009, pp. 1919-1923. doi:10.1016/j.elecom.2009.08.016
[64] S. K. Arya, P. R. Solanki, M. Datta and B. D. Malhotra, “Recent Advances in Self-Assembled Monolayers Based Biomolecular Electronic Devices,” Biosensors and Bioelectronics, Vol. 24, No. 9, 2009, pp. 2810-2817. doi:10.1016/j.bios.2009.02.008
[65] P. R. Solanki, A. Kaushik, P. M. Chavhan, S. N. Maheshwari and B. D. Malhotra, “Nanostructured Zirconium Oxide Based Genosensor for Escherichia coli Detection,” Electrochemistry Communications, Vol. 11, No. 12, 2009, pp. 2272-2277. doi:10.1016/j.elecom.2009.10.007
[66] A. Kaushik, J. Kumar, M. K. Tiwari, R. Khan, B. D. Malhotra, V. Gupta, et al., “Fabrication and Characterization of Polyaniline-ZnO Hybrid Nanocomposite Thin Films,” Journal of Nanoscience and Nanotechnology, Vol. 8, No. 4, 2008, pp. 1757-1761. doi:10.1166/jnn.2008.006
[67] M. Kruk and M. Jaroniec, “Gas Adsorption Characterization of Ordered Organic-Inorganic Nanocomposite Materials,” Chemistry of Materials, Vol. 3, No. 10, 2001, pp. 3169-3183. doi:10.1021/cm0101069
[68] D. G. Shchukin, G. B. Sukhorukov and H. Mohwald, “Smart Inorganic/Organic Nanocomposite Hollow Microcapsules,” Angewandte Chemie International Edition, Vol. 42, No. 37, 2003, pp. 4472-4475. doi:10.1002/anie.200352068
[69] E. Ruiz-Hitzky, “Functionalizing Inorganic Solids: Towards Organic-Inorganic Nanostructured Materials for Intelligent and Bioinspired Systems,” The Chemical Record, Vol. 3, No. 2, 2003, pp. 88-100. doi:10.1002/tcr.10054
[70] B. Krajewska, “Application of Chitin- and Chitosan- Based Materials for Enzyme Immobilizations: A Review,” Enzyme and Microbial Technology, Vol. 35, No. 2-3, 2004, pp. 126-139. doi:10.1016/j.enzmictec.2003.12.013
[71] E. Ruiz-Hitzky, M. Darder and P. Aranda, “Functional Biopolymer Nanocomposites Based on Layered Solids,” Journal of Materials Chemistry, Vol. 15, No. 35-36, 2005, pp. 3650-3662. doi:10.1039/b505640n
[72] H. Uehara, M. Kakiage, M. Sekiya, D. Sakuma, T. Yamonobe, N. Takano, et al., “Size-Selective Diffusion in Nanoporous but Flexible Membranes for Glucose Sensors, ACS Nano, Vol. 3, No. 4, 2009, pp. 924-932. doi:10.1021/nn8008728
[73] Z. Burghard, A. Tucic, L. P. H. Jeurgens, R. C. Hoffmann, J. Bill and F. Aldinger, “Nanomechanical Properties of Bioinspired Organic-Inorganic Composite Films,” Advanced Materials, Vol. 19, No. 7, 2007, pp. 970-974. doi:10.1002/adma.200601068
[74] D. B. Mitzi, “Thin-Film Deposition of Organic-Inorganic Hybrid Materials,” Chemistry of Materials, Vol. 13, No. 10, 2001, pp. 3283-3298. doi:10.1021/cm0101677
[75] C. Sanchez, B. Julian, P. Belleville and M. Popall, “Applications of Hybrid Organic-Inorganic Nanocomposites,” Journal of Materials Chemistry, Vol. 15, No. 35- 36, 2005, pp. 3559-3592. doi:10.1039/b509097k
[76] Y. A. Shchipunov, T. Y. Y. Karpenko and A. V. Krekoten, “Hybrid Organic-Inorganic Nanocomposites Fabricated with a Novel Biocompatible Precursor Using Sol-Gel Processing,” Composite Interfaces, Vol. 11, No. 8-9, 2005, pp. 587-607. doi:10.1163/1568554053148816
[77] J.-L. Shi, Z.-L. Hua and L.-X. Zhang, “Nanocomposites from Ordered Mesoporous Materials,” Journal of Materials Chemistry, Vol. 14, No. 5, 2004, pp. 795-806. doi:10.1039/b315861f
[78] N. Sukpirom and M. M. Lerner, “Preparation of Organic- Inorganic Nanocomposites with a Layered Titanate,” Chemistry of Materials, Vol. 13, No. 6, 2001, pp. 2179- 2185. doi:10.1021/cm0101226
[79] A. Walcarius, “Electrochemical Applications of Silica- Based Organic-Inorganic Hybrid Materials,” Chemistry of Materials, Vol. 13, No. 10, 2001, pp. 3351-3372. doi:10.1021/cm0110167
[80] L. Chen and W. Gorski, “Bioinorganic Composites for Enzyme Electrodes,” Analytical Chemistry, Vol. 73, No. 13, 2001, pp. 2862-2868. doi:10.1021/ac010009z
[81] J. Li, Q. Liu, Y. Liu, S. Liu and S. Yao, “DNA Biosensor Based on Chitosan Film Doped with Carbon Nanotubes,” Analytical Biochemistry, Vol. 346, No. 1, 2005, pp. 107- 114. doi:10.1016/j.ab.2005.07.037
[82] D. J. Macquarrie and J. J. E. Hardy, “Applications of Functionalized Chitosan in Catalysis,” Industrial & Engineering Chemistry Research, Vol. 44, No. 23, 2005, pp. 8499-8520. doi:10.1021/ie050007v
[83] D. Odaci, S. Timur and A. Telefoncu, “Bacterial Sensors Based on Chitosan Matrices,” Sensors and Actuators B: Chemical, Vol. 134, No. 1, 2008, pp. 89-94. doi:10.1016/j.snb.2008.04.013
[84] H. Yi, L.-Q. Wu, W. E. Bentley, R. Ghodssi, G. W. Rubloff, J. N. Culver, et al., “Biofabrication with Chitosan,” Biomacromolecules, Vol. 6, No. 6, 2005, pp. 2881- 2894. doi:10.1021/bm050410l
[85] J. M. C. S. Magalhaes and A. A. S. C. Machado, “Urea Potentiometric Biosensor Based on Urease Immobilized on Chitosan Membranes,” Talanta, Vol. 47, No. 1, 1998, pp. 183-191. doi:10.1016/S0039-9140(98)00066-6
[86] J. Cruz, M. Kawasaki and W. Gorski, “Electrode Coatings Based on Chitosan Scaffolds,” Analytical Chemistry, Vol. 72, No. 4, 2000, pp. 680-686. doi:10.1021/ac990954b
[87] Y. Miao and S. N. Tan, “Amperometric Hydrogen Peroxide Biosensor Based on Immobilization of Peroxidase in Chitosan Matrix Crosslinked with Glutaraldehyde,” Analyst, Vol. 125, No. 9, 2000, pp. 1591-1594. doi:10.1039/b003483p
[88] C. Xu, H. Cai, P. G. He and Y. Z. Fang, “Electrochemical Detection of Sequence-Specific DNA Using a DNA Probe Labeled with Aminoferrocene and Chitosan Modified Electrode Immobilized with ssDNA,” Analyst, Vol. 126, No. 1, 2001, pp. 62-65. doi:10.1039/b005847p
[89] H. Gupta and M. Aqil, “Contact Lenses in Ocular Therapeutics,” Drug Discovery Today, Vol. 17, No. 9-10, 2012, pp. 522-527. doi:10.1016/j.drudis.2012.01.014
[90] M. Garcia-Fuentes and M. J. Alonso, “Chitosan-Based Drug Nanocarriers: Where Do We Stand?” Journal of Controlled Release, Vol. 161, No. 2, 2012, pp. 496-504. doi:10.1016/j.jconrel.2012.03.017
[91] C. A. Custódio, C. M. Alves, R. L. Reis and J. F. Mano, “Immobilization of Fibronectin in Chitosan Substrates Improves Cell Adhesion and Proliferation,” Journal of Tissue Engineering and Regenerative Medicine, Vol. 4, No. 4, 2010, pp. 316-323. doi:10.1002/term.248
[92] I. T. Cavalcanti, B. V. M. Silva, N. G. Peres, P. Moura, M. D. P. T. Sotomayor, M. I. F. Guedes, et al., “A Disposable Chitosan-Modified Carbon Fiber Electrode for Dengue Virus Envelope Protein Detection,” Talanta, Vol. 91, No. 15, 2012, pp. 41-46. doi:10.1016/j.talanta.2012.01.002
[93] S. Parvez, M. Rahman, M. Khan, M. Khan, J. Islam, M. Ahmed, et al., “Preparation and Characterization of Artificial Skin Using Chitosan and Gelatin Composites for Potential Biomedical Application,” Polymer Bulletin, Vol. 69, No. 6, 2012, pp. 715-731. doi:10.1007/s00289-012-0761-7
[94] L. Upadhyaya, J. Singh, V. Agarwal and R. P. Tewari, “Biomedical Applications of Carboxymethyl Chitosans,” Carbohydrate Polymers, Vol. 91, No. 1, 2013, pp. 452- 466.
[95] R. Khan and M. Dhayal, “Nanocrystalline Bioactive TiO2- Chitosan Impedimetric Immunosensor for Ochratoxin-A,” Electrochemistry Communications, Vol. 10, No. 3, 2008, pp. 492-495. doi:10.1016/j.elecom.2008.01.013
[96] R. Khan and M. Dhayal, “Chitosan/Polyaniline Hybrid Conducting Biopolymer Base Impedimetric Immunosensor to Detect Ochratoxin-A,” Biosensors and Bioelectronics, Vol. 24, No. 6, 2009, pp. 1700-1705. doi:10.1016/j.bios.2008.08.046
[97] A. Kaushik, P. R. Solanki, A. A. Ansari, S. Ahmad and B. D. Malhotra, “Chitosan-Iron Oxide Nanobiocomposite Based Immunosensor for Ochratoxin-A,” Electrochemistry Communications, Vol. 10, No. 9, 2008, pp. 1364-1368. doi:10.1016/j.elecom.2008.07.007

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.