Structural and Magnetic Properties of Substituted Delafossite-Type Oxides CuCr1 - xScxO2


This work describes the scandium doping effect on the structural and magnetic properties of delafossite-type oxides CuCr1 - xScxO2. The lattice parameters were found to vary according to Vegard’s low. A reflection broadening is observed, that is ascribed to local lattice distortion due to the ionic radius difference between Cr3+ and the non-magnetic dopants. Magnetic susceptibility measurements show that the dominant interactions are antiferromagnetic (AFM) but that doping induces significant changes. The coupling between the local spins at the Cr sites and doped metal transition may enhance spin fluctuations at the Cr sites, which break the residual magnetic degeneracy as fluctuation-induced symmetry breaking in a highly magnetic degenerate ground state manifold of some frustrated systems.


Share and Cite:

T. Elkhouni, M. Amami, P. Strobel and A. Salah, "Structural and Magnetic Properties of Substituted Delafossite-Type Oxides CuCr1 - xScxO2," World Journal of Condensed Matter Physics, Vol. 3 No. 1, 2013, pp. 1-8. doi: 10.4236/wjcmp.2013.31001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Friedel, “A Combination of Natural Iron Oxides and Copper and Reproduction of Actamides,” Report of Sciences. Sciences Academy, Vol. 77, 1873, p. 211.
[2] D. B. Rogers, R. D. Shannon, C. T. Prewitt and J. L. Gillson, “Chemistry of Noble Metal Oxides. III. Electrical Transport Properties and Crystal Chemistry of ABO2 Compounds with the Delafossite Structure,” Inorganic Chemistry, Vol. 10, No. 4, 1971, pp. 723-727. doi:10.1021/ic50098a013
[3] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, “p-type Electrical Conduction in Transparent Thin Films of CuAlO2,” Nature, Vol. 389, 1997, pp. 939-942. doi:10.1038/40087
[4] H. Yanagi, S. Inoue, K. Ueda, H. Kawazoe and H. Hosono, “Electronic Structure and Optoelectronic Properties of Transparent p-Type Conducting CuAlO2,” Journal of Applied Physics, Vol. 88, No. 7, 2000, pp. 4159-4164. doi:10.1063/1.1308103
[5] M. Marquardt, N. Ashmore and D. Cann, “Crystal Chemistry and Electrical Properties of the Delafossite Structure,” Thin Solid Films, Vol. 496, No. 1, 2006, pp. 146156. doi:10.1016/j.tsf.2005.08.316
[6] R. Kykyneshi, B. Nielsen, J. Tate, J. Li and A. Sleight. “Structural and Transport Properties of CuSc1 - xMgxO2 + y Delafossites,” Journal of Applied Physics, Vol. 96, No. 11, 2004, pp. 6188-6195. doi:10.1063/1.1806256
[7] J. Li, A. F. T. Yokochi and A. W. Sleight. “Oxygen Intercalation of Two Polymorphs of CuScO2,” Journal of Solid State Sciences, Vol. 6, No. 8, 2004, pp. 831-839. doi:10.1016/j.solidstatesciences.2004.04.015
[8] J. Doumerc, A. Ammar, A. Wichainchai, M. Pouchard and P. Hagenmuller, “Sur Quelques Nouveaux Composes de Structure de Type Delafossite,” Journal of Physical Chemistry of Solids, Vol. 48, No. 1, 1987, pp. 37-43.
[9] J. Li, A. Yokochi, T. Amos and A. Sleight, “Strong Negative Thermal Expansion along the O-Cu-O Linkage in CuScO2,” Chemistry of Materials, Vol. 14, No. 6, 2002, pp. 2602-2606.
[10] P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara and M. Watanabe, “Uniaxial Locked Growth of High-Quality Epitaxial ZnO Films on (1 1 2- 0)α-Al2O3,” Journal of Crystal Growth, Vol. 209, No. 2-3, 2000, pp. 532-536. doi:10.1016/S0022-0248(99)00614-4
[11] R. N. Attili, M. Uhrmacher, K. P. Lieb, L. Ziegeler, M. Mekata and E. Schwarz mann, “Electric-Field Gradients at 111Cd in Delafossite Oxides ABO2 (A = Ag, Cu; B = Al, Cr, Fe, In, Nd, Y),” Physical Review B, Vol. 53, No. 2, 1996, pp. 600-608. doi:10.1103/PhysRevB.53.600
[12] S. Seki, Y. Onose and Y. Tokura, “Spin-Driven Ferroelectricity in Triangular Lattice Antiferromagnets ACrO2 (A = Cu, Ag, Li, or Na)”, Physical Review Letter, Vol. 101, No. 6, 2008, pp. 67204-67208. doi:10.1103/PhysRevLett.101.067204
[13] M. Amami, S. Smari, K. Tayeb, P. Strobel and A. Ben Salah, “Cationic Doping Effect on the Structural, Magnetic and Spectroscopic Properties of Delafossite Oxides CuCr1 - x(Sc,Mg)xO2,” Journal of Material Chemistry and Physics, Vol. 128, 2011, p. 298.
[14] G. Williamson and W. H. Hall, “X-Ray Line Broadening from Filed Aluminium and Wolfram,” Acta Metallurgica, Vol. 1, No. 1, 1953, pp. 22-31. doi:10.1016/0001-6160(53)90006-6
[15] R. Nagarajan, N. Duan, M. K. Jayaraj, J. Li, K. A. Vanaja, A. Yokochi, A. Draeseke, J. Tate and A. W. Sleight, “pType Conductivity in the Delafossite Structure,” International Journal of Inorganic Materials, Vol. 3, No. 3, 2001, pp. 265-270.
[16] R. Shannon, D. Rogers and C. Prewitt, “Chemistry of Noble Metal Oxides. I. Syntheses and Properties of ABO2 Delafossite Compounds,” Inorganic Chemistry, Vol. 10, No. 4, 1971, pp. 713-718. doi:10.1021/ic50098a011
[17] L. Vegard, “Lattice Fluctuations in Solid Solution Formation by Precipitation of Solutions,” Journal for Physics A, Vol. 43, No. 5-6, 1927, pp. 299-308. doi:10.1007/BF01397444
[18] C. Prewitt, R. Shannon and D. Rogers, “Chemistry of Noble Metal Oxides. II. Crystal Structures of Platinum Cobalt Dioxide, Palladium Cobalt Dioxide, Coppper Iron Dioxide and Silver Iron Dioxide,” Inorganic Chemistry, Vol. 10, No. 4, 1971, pp. 719-723. doi:10.1021/ic50098a012
[19] J. Tate, M. Jayaraj, A. Draeseke, T. Ulbrich, A. Sleight, K. Vanaja, R. Nagarajan, J. Wagner and R. Hoffman, “p-Type Oxides for Use in Transparent Diodes,” Thin Solid Films, Vol. 411, No. 1, 2002, pp. 119-124. doi:10.1016/S0040-6090(02)00199-2
[20] M. Amami, C. V. Colin, P. Strobel and A. B. Salah, “AlDoping Effect on the Structural and Physical Properties of Delafossite-Type Oxide CuCrO2,” Physica B: Condensed Matter, Vol. 406, No. 11, 2011, pp. 2182-2185. doi:10.1016/j.physb.2011.03.027
[21] O. Garlea, C. Darie, C. Bougerol, O. Isnard and P. Bordet, “Structure of LaCuO2.66: An Oxidized Delafossite Compound Containing Hole-Doped Kagome Planes of Cu2+ Cations,” Journal of Solid State Sciences, Vol. 5, No. 8, 2003, pp. 1095-1104. doi:10.1016/S1293-2558(03)00145-6
[22] L. Da, F. Xiaodong, D. Weiwei, D. Zanhong, T. Ruhua, Z. Shu, J. Wang, T. Wang, Y. Zhao and X. Zhu, “Magnetic and Electrical Properties of p-Type Mn-Doped CuCrO2 Semiconductors,” Journal of Physics D: Applied Physics, Vol. 42, No. 5, 2009, p. 55009. doi:10.1088/0022-3727/42/5/055009
[23] J. Pellicer-Porres, A. Segura, Ch. Ferrer-Roca, D. Martinez-Garcia, J. A. Sans and E. Martinez, “Structural Evolution of the CuGaO2 Delafossite under High Pressure,” Physical Review B, Vol. 69, No. 2, 2004, p. 24109. doi:10.1103/PhysRevB.69.024109
[24] J. Pellicer-Porres, A. Segura and E. Martinez, “Vibrational properties of delafossite CuGaO2 at ambient and high pressures” Physical Review B,Vol. 72, No. , 2005, pp. 064301. doi:10.1103/PhysRevB.72.064301
[25] J. Pellicer-Porres, D. Martinez-Garcia, A. Segura, P. Rodriguez-Hernandez, A. Munoz, J. C. Chervin, N. Garro and D. Kim, “Pressure and Temperature Dependence of the Lattice Dynamics of CuAlO2 Investigated by Raman Scattering Experiments and ab Initio Calculations,” Physical Review B, Vol. 74, No. 18, 2006, pp. 184301184309. doi:10.1103/PhysRevB.74.184301
[26] J. E. Maslar, W. S. Hurst, T. A. Vanderah and I. Levin, “The Raman Spectra of Cr3O8 and Cr2O5,” Journal of Raman Spectroscopy, Vol. 32, No. 3, 2001, pp. 201-206. doi:10.1002/jrs.687
[27] H. Kadoeaki, H. Kikuchi and Y. Ajiro, “Neutron Powder Diffraction Study of the Two-Dimensional Triangular Lattice Antiferromagnet CuCrO2,” Journal of Physics: Condensed Matter, Vol. 2, No. 19, 1990, p. 4485. doi:10.1088/0953-8984/2/19/014
[28] F. Jlaiel, M. Amami, N. Boudjada, P. Strobel and A. B. Salah, “Metal Transition Doping Effect on the Structural and Physical Properties Ofdelafossite-Type Oxide CuCrO2,” Journal of Alloys and Compounds, Vol. 509, No. 29, 2011, pp. 7784-7788. doi:10.1016/j.jallcom.2011.04.153

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.