[1]
|
J. Renn and D. Hoffmann, “1905—A Miraculus Year,” Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 38, No. 9, 2005, pp. S437-S448.
|
[2]
|
O. G. Mouritsen, “Computer Studies of Phase Transitions and Critical Phenomena,” Springer, Berlin, 1984.
doi:10.1007/978-3-642-69709-8
|
[3]
|
K. Binder, “Theory of First-Order Phase Transitions,” Reports on Progress in Physics, Vol. 50, No. 7, 1987, pp. 783-859. doi:10.1088/0034-4885/50/7/001
|
[4]
|
H. Gould and J. Tobochnik, “An Introduction to Computer Simulation Methods (Applications to Physical Systems, Part 2),” Addition-Wesley, New York, 1988.
|
[5]
|
M. N. Barber, “Phase Transitions in Two Dimensions,” Physics Reports, Vol. 59, No. 4, 1980, pp. 375-409.
doi:10.1016/0370-1573(80)90026-5
|
[6]
|
L. J. de Jongh and A. R. Miedema, “Experiments on Simple Magnetic Model System,” Advances in Physics, Vol. 50, No. 8, 2001, pp. 947-1170.
doi:10.1080/00018730110101412
|
[7]
|
I. Morgenstern, K. A. Müller and J. G. Bednorz, “Numerical Simulations of a High-Tc Superconductive Glass Model,” Zeitschrift für Physik B Condensed Matter, Vol. 69, No. 1, 1987, pp. 33-47. doi:10.1007/BF01560607
|
[8]
|
N. Goldenfeld, “Lectures on Phase Transition and Renormalization Group,” Addison-Wesley, Reading, 1992.
|
[9]
|
N. D. Mermin and H. Wagner, “Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimen- sional Isotropic Heisenberg Models,” Physical Review Letters, Vol. 17, No. 22, 1966, pp. 1133-1136.
doi:10.1103/PhysRevLett.17.1133
|
[10]
|
V. L. Berezinskii, “Destruction of Long Range Order in One Dimensional and Two Dimensional Systems Having a Continuous Symmetry Group I. Classical Systems,” Soviet Physics JETP, Vol. 32, 1971, pp. 493-500.
|
[11]
|
J. M. Kosterlitz and D. J. Thouless, “Long Range Order and Metastability in Two Dimensional Solids and Superfluids. (Application of Dislocation Theory),” Journal of Physics C: Solid State Physics, Vol. 7, No. 6, 1974, p. 1046. doi:10.1088/0022-3719/7/6/005
|
[12]
|
F. J. Wegner, “Spin-Ordering in a Planar Classical Heisenberg Model,” Zeitschrift für Physik, Vol. 206, No. 5, 1967, pp. 465-470. doi:10.1007/BF01325702
|
[13]
|
V. L. Berezinskii, Soviet Physics JETP, Vol. 34, 1971, p. 610.
|
[14]
|
J. Zittartz, “Phase Transition of the Two-Dimensional Classical XY-Model,” Zeitschrift fur Physik B, Vol. 23, No. 1, 1976, pp. 55-69.
|
[15]
|
J. V. Jose, L. P. Kadanoff, S. Kirkpatrick and D. J. Nelson, “Renormalization, Vortices and Symmetry-Breaking Perturbations in the Two-Dimensional Planar Model,” Physical Review B, Vol. 16, No. 3, 1977, pp. 1217-1241.
doi:10.1103/PhysRevB.16.1217
|
[16]
|
C. Kawabata and K. Binder, “Evidence for Vortex Formation in Monte Carlo Studies of the Two-Dimensional XY-Model,” Solid State Communications, Vol. 22, No. 11, 1977, pp. 705-710.
doi:10.1016/0038-1098(77)90255-1
|
[17]
|
S. Miyashita, H. Nishimori, A. Kuroda and M. Suzuki, “Monte Carlo Simulation and Static and Dynamic Critical Behavior of the Plane Rotator Model,” Progress of Theoretical Physics, Vol. 60, No. 6, 1978, 1669-1685.
doi:10.1143/PTP.60.1669
|
[18]
|
J. Tobochnik and G. V. Chester, “Monte Carlo Study of the Planar Spin Model,” Physical Review B, Vol. 20, No. 9, 1979, pp. 3761-3769. doi:10.1103/PhysRevB.20.3761
|
[19]
|
W. J. Shugard, J. D. Weeks and G. H. Gilmer, “Monte-Carlo Simulation of the Planar Model Using the Dual Solid-On-Solid Representation,” Vol. 21, No. 11, 1980, pp. 5309-5311. doi:10.1103/PhysRevB.21.5309
|
[20]
|
J. E. van Himbergen and S. Chakravarty, “Helicity Modulus and Specific Heat of Classical XY Model in Two Dimensions,” Physical Review B, Vol. 23, No. 1, 1984, pp. 359-361. doi:10.1103/PhysRevB.23.359
|
[21]
|
H. Betsuyaku, “Monte Carlo Renormalization of Kadanoff Block Transformation in the 2-d Plane-Rotator Model,” Physica A, Vol. 106, No. 1, 1981, pp. 311-325.
doi:10.1016/0378-4371(81)90229-6
|
[22]
|
J. F. Fernandes, M. F. Ferreira and J. Stankiewicz, “Critical Behavior of the Two Dimensional XY Model: A Monte Carlo Simulation,” Physical Review B, Vol. 34, No. 1, 1986, pp. 292-300. doi:10.1103/PhysRevB.34.292
|
[23]
|
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller, Journal of Chemical Physics, Vol. 21, 1953, p. 1087.
|
[24]
|
R. Gupta, J. Delapp, G. G. Batrouni, G. C. Fox, C. F. Baillie and J. Apostolakis, “Phase Transition in the 2D XY Model,” Physical Review Letters, Vol. 61, No. 17, 1988, pp. 1996-1999. doi:10.1103/PhysRevLett.61.1996
|
[25]
|
R. Gupta and C. F. Baillie, “Critical Behavior of the Two-Dimensional XY Model,” Physical Review B, Vol. 45, No. 6, 1992, pp. 2883-2898.
doi:10.1103/PhysRevB.45.2883
|
[26]
|
U. Wolff, “Collective Monte Carlo Updating in a High Precision Study of X-Y Model,” Nuclear Physics B, Vol. 322, No. 3, 1989, pp. 759-774.
doi:10.1016/0550-3213(89)90236-8
|
[27]
|
J. Kogut and J. Polonyi, “Microcanonical Study of the Planar Spin Model,” Nuclear Physics B, Vol. 265, 1986, pp. 313-323. doi:10.1016/0550-3213(86)90312-3
|
[28]
|
E. Domany, M. Schick, R. H. Swendsen, “First-Order Transition in an xy Model with Nearest-Neighbor Interactions,” Physical Review Letters, Vol. 52, No. 17, 1984, pp. 1535-1538. doi:10.1103/PhysRevLett.52.1535
|
[29]
|
J. E. van Himbergen, “From Continuous to First-Order Transition in a Simple XY Model,” Physical Review Letters, Vol. 53, No. 1, 1984, pp. 5-8.
doi:10.1103/PhysRevB.29.6387
|
[30]
|
J. E. Hirsh, “Charge-Density-Wave to Spin-Density-Wave Transition in the Extended Hubbard Model,” Physical Review Letters, Vol. 53, No. 24, 1984, pp. 2327-2330.
doi:10.1103/PhysRevLett.53.2327
|
[31]
|
H. J. F. Knops, “First-Order Transition in the XY Model,” Physical Review B, Vol. 30, No. 1, 1984, pp. 470-472. doi:10.1103/PhysRevB.30.470
|
[32]
|
J. E. van Himbergen, “Kosterlitz-Thouless Transitions in Simple Spin Models with Strongly Varying Vortex Densities,” Solid State Communications, Vol. 55, No. 4, 1985, pp. 289-193. doi:10.1016/0038-1098(85)90610-6
|
[33]
|
D. Frenkel and R. Eppenga, “Evidence for Algebraic Orientational Order in a Two-Dimensional Hard-Core Nematic,” Physical Review A, Vol. 31, No. 3, 1985, pp. 1776-1787. doi:10.1103/PhysRevA.31.1776
|
[34]
|
K. J. Strandburg, “Two-Dimensional Melting,” Reviews of Modern Physics, Vol. 60, No. 1, 1988, pp. 161-207.
doi:10.1103/RevModPhys.60.161
|
[35]
|
J. R. Lee and S. Teitel, “New Critical Behavior in the Dense Two-Dimensional Classical Coulomb Gas,” Physical Review Letters, Vol. 64, No. 13, 1990, pp. 1483-1486. doi:10.1103/PhysRevLett.64.1483
|
[36]
|
M. J. P. Gingras, P. C. W. Holdsworth and B. Bergersen, “Monte Carlo Study of Induced Bond Orientational Ordering in Two-Dimensional Liquid-Crystal Models,” Physical Review A, Vol. 41, No. 12, 1990, pp. 6786-6795.
doi:10.1103/PhysRevA.41.6786
|
[37]
|
T. Garel, J. C. Niel and H. Orland, “Disorder Lines and Nonmonotonous Renormalization Group Flows: Application to the Two-Dimensional XY-Model,” Europhysics Letters, Vol. 11, No. 4, 1990, pp. 349-354.
doi:10.1209/0295-5075/11/4/010
|
[38]
|
P. Olsson and P. Minnhagen, “Interplay between One- and Two-Dimensional Fluctuations for a Class of XY Models,” Physical Review B, Vol. 43, No. 4, 1991, pp. 3356-3361. doi:10.1103/PhysRevB.43.3356
|
[39]
|
S. E. Korshunov, “Disorder Induced First-Order Transition in Superconducting Flims,” Physical Review B, Vol. 46, No. 10, 1992, pp. 6615-6617.
doi:10.1103/PhysRevB.46.6615
|
[40]
|
A. Jonsson, P. Minnhagen and M. Nylén, “New Critical Point for Two Dimensional XY-Type Models,” Physical Review Letters, Vol. 70, No. 9, 1993, pp. 1327-1330.
doi:10.1103/PhysRevLett.70.1327
|
[41]
|
G. M. Zhang, H. Chen and X. Wu, “First-Order Transition in the Dense Two-Dimensional Classical Coulomb Gas,” Physical Review B, Vol. 48, No. 16, 1993, pp. 12304-12307. doi:10.1103/PhysRevB.48.12304
|
[42]
|
F. Mila, “First-Order versus Kosterlitz-Thouless Transition in a Class of Modified XY-Model,” Physical Review B, Vol. 47, No. 1, 1993, pp. 442-445.
doi:10.1103/PhysR evB.47.442
|
[43]
|
C. Timm, “Flux Noise in High-Temperature Superconductors,” Physical Review B, Vol. 55, No. 5, 1997, pp. 3241-3248. doi:10.1103/PhysRevB.55.3241
|
[44]
|
A. Jonsson and P. Minnhagen, “Complex Impedance of a Two-Dimensional Josephson Junction Array,” Physica C, Vol. 277, No. 3-4, 1997, pp. 161-169.
doi:10.1016/S0921-4534(97)00098-1
|
[45]
|
A. Jonsson and P. Minhagen, “Characteristics of Two-Dimensional Vortex Dynamics from XY-Type Models with Ginzburg-Landau Dynamics,” Physical Review B, Vol. 55, No. 14, 1997, pp. 9035-9046.
doi:10.1103/PhysRevB.55.9035
|
[46]
|
Ch. Dellago and H. A. Posch, “Lyapunov Instability in the Extended XY-Model: Equilibrium and Non Equilibrium Molecular Dynamics Simulations,” Physica A, Vol. 237, No. 1, 1997, pp. 95-112.
doi:10.1016/S0378-4371(96)00423-2
|
[47]
|
G. Alvarez and H. Fort, “On the Nature of the Phase Transition Triggered by Vortex-Like Defects in the 2D Ginzburg-Landau Model,” Physics Letters A, Vol. 282, No. 6, 2001, pp. 399-406.
doi:10.1016/S0375-9601(01)00210-9
|
[48]
|
K. Medvedyeva, B. J. Kim and P. Minnhagen, “Ubiquitous Finite-Size Scaling Features in I-V Characteristics of Various Dynamic XY Models in Two Dimensions,” Physica C, Vol. 355, No. 1-2, 2001, pp. 6-14.
doi:10.1016/S0921-4534(01)00026-0
|
[49]
|
M. Creutz, “Microcanonical Monte Carlo simulation,” Physical Review Letters, Vol. 50, No. 19, 1983, pp. 1411-1414. doi:10.1103/PhysRevLett.50.1411
|
[50]
|
S. Ota, S. B. Ota and M. F?hnle, “Microcanonical Monte Carlo Simulation for the Two-Dimensional XY Model,” Journal of Physics: Condensed Matter, Vol. 4, No. 24, 1992, pp. 5411-5418. doi:10.1088/0953-8984/4/24/011
|
[51]
|
D. P. Landau, S. H. Tsai and M. Exler, “A New Approach to Monte Carlo Simulations in Statistical Physics: Wang-Landau Sampling,” American Journal of Physics, Vol. 72, No. 10, 2004, pp. 1294-1302.
doi:10.1119/1.1707017
|
[52]
|
O. Hammrich, “New Multiple Histogram Method for Studying Phase Transition,” Zeitschrift fur Physik B, Vol. 92, No. 4, 1993, pp. 501-505. doi:10.1007/BF01320513
|
[53]
|
K. G. Wilson and J. Kogut, “The Renormalization Group and the e Expansion,” Physics Reports, Vol. 12, No. 2, 1974, pp. 75-200. doi:10.1016/0370-1573(74)90023-4
|
[54]
|
P. A. Rikvold and B. M. Gorman, In: D. Stauffer, Ed., Annual Reviews of Computational Physics I, World Scientific, Singapore City, 1994.
|
[55]
|
D. H. E. Gross, “Microcanonical Thermodynamics and Statistical Fragmentation of Dissipative Systems,” Physics Reports, Vol. 279, No. 3, 1997, pp. 119-201.
doi:10.1016/S0370-1573(96)00024-5
|
[56]
|
W. Janke, “Canonical versus Microcanonical Analysis of First-Order Phase Transitions,” Nuclear Physics B, Vol. 63, No. 1-3, 1998, pp. 631-633.
|
[57]
|
S. B. Ota and S. Ota, “Vortices in the 2d Classical XY-Model: A Microcanonical Monte Carlo Simulation Study,” Physics Letters A, Vol. 206, No. 1-2, 1995, pp. 133-136. doi:10.1016/0375-9601(95)00588-T
|
[58]
|
S. B. Ota and S. Ota, “Inhomogeneity of Vortex Charge in the 2D Classical XY Model,” Physics Letters A, Vol. 241, No. 1, 1998, pp. 127-130.
doi:10.1016/S0375-9601(98)00034-6
|