Neutrino Oscillations and Superluminal Propagation, in OPERA or Otherwise


We digress on the implications of recent claims of superluminal neutrino propagation. No matter how we turn it around such behaviour is very odd and sits uncomfortably even within far-fetched theories. In the context of non-linear realizations of the Lorentz group (where superluminal misbehaviour is run of the mill) one has to accept rather contrived constructions to predict superluminal properties for the neutrino. The simplest explanation is to require that at least one of the mass states be tachyonic. We show that due to neutrino mixing, the flavor energy does not suffer from the usual runaway pathologies of tachyons. For non-tachyonic mass states the theories become more speculative. A neutrino specific dispersion relation is exhibited, rendering the amplitude of the effect reasonable for a standard Planck energy. This uses the fact that the beam energy is close to the geometrical average of the neutrino and Planck mass; or, seen in another way, the beam energy is unexceptional but its gamma factor is very large. A dispersion relation crossing over from a low energy bradyonic branch to a high energy tachyonic one is also considered. We comment on consistency with SN 1987Awithin these models.

Share and Cite:

J. Magueijo, "Neutrino Oscillations and Superluminal Propagation, in OPERA or Otherwise," Journal of Modern Physics, Vol. 4 No. 1, 2013, pp. 76-81. doi: 10.4236/jmp.2013.41013.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. Pontecorvo, “Mesonium and Anti-Mesonium,” Sovietic Journal of Experimental and Theoretical Physics, Vol. 33, 1957, pp. 549-551.
[2] B. Pontecorvo, “Electron and Muon Neutrino,” Sovietic Journal of Experimental and Theoretical Physics, Vol. 6, 1958, pp. 429-439.
[3] S. M. Bilenky and B. Pontecorvo, “Lepton Mixing and Neutrino Oscillations,” Physics Reports, Vol. 41, No. 4, 1978, pp. 225-231. doi:10.1016/0370-1573(78)90095-9
[4] T. Adam, et al., “Measurement of the Neutrino Velocity with the OPERA Detector in the CNGS Beam, OPERA Collaboration,” arXiv:1109.4897.
[5] W. Winter, “Constraints on the Interpretation of the Superluminal Motion of Neutrinos at OPERA,” arXiv: 1110.0424.
[6] C. Contaldi, “The OPERA Neutrino Velocity Result and the Synchronisation of Clocks,” arXiv:1109.6160.
[7] G. Amelino-Camelia, et al., “OPERA-Reassessing Data on the Energy Dependence of the Speed of Neutrinos,” International Journal of Modern Physics, Vol. 20, 2011, pp. 2623-2640.
[8] G. Cacciapaglia, A. Deandrea and Luca Panizzi, “Superluminal Neutrinos in Long Baseline Experiments and SN1987a,” arXiv:1109.4980.
[9] J. Magueijo, “New Varying Speed of Light Theories,” Reports Progress Physics, Vol. 66, No. 11, 2003, pp. 2025-2099. doi:10.1088/0034-4885/66/11/R04
[10] J. Moffat, “Superluminary Universe: A Possible Solution to the Initial Value Problem in Cosmology,” International Journal Modern Physics D, Vol. 2, No. 3, 1993, pp. 351-366. doi:10.1142/S0218271893000246
[11] A. Albrecht and J. Magueijo, “A Time Varying Speed of Light as a Solution to Cosmological Puzzles,” Physical Review D, Vol. 59, No. 4, 1999, Article ID: 043516. doi:10.1103/PhysRevD.59.043516
[12] G. Amelino-Camelia, “Doubly Special Relativity,” Nature, Vol. 418, No. 6893, 2002, pp. 34-35. doi:10.1038/418034a
[13] G. Amelino-Camelia, “Doubly Special Relativity: First Results and Key Open Problems,” International Journal Modern Physics D, Vol. 11, No. 1, 2002, pp. 35-60. doi:10.1142/S0218271802001330
[14] G. Amelino-Camelia, “Testable Scenario for Relativity with Minimum Length,” Physics Letters B, Vol. 510, No. 1-4, 2001, pp. 255-263. doi:10.1016/S0370-2693(01)00506-8
[15] J. Magueijo and L. Smolin, “Lorentz Invariance with an Invariant Energy Scale,” Physical Review Letters, Vol. 88, No. 19, 2002, Article ID: 190403. doi:10.1103/PhysRevLett.88.190403
[16] J. Magueijo and L. Smolin, “Generalized Lorentz Invariance with an Invariant Energy Scale,” Physical Review D, Vol. 67, No. 4, 2003, Article ID: 044017. doi:10.1103/PhysRevD.67.044017
[17] M. Blasone, J. Magueijo and P. Pires-Pacheco, “Neutrino Mixing and Lorentz Invariance,” Europhysics Letters, Vol. 70, No. 5, 2005, pp. 600-607. doi:10.1209/epl/i2005-10027-1
[18] M. Blasone, J. Magueijo and P. Pires-Pacheco, “Lorentz Invariance for Mixed Neutrinos,” Brazilian Journal of Physics, Vol. 35, No. 2b, 2005, pp. 447-454. doi:10.1590/S0103-97332005000300014
[19] A. Osipowicz, et al., “The Katrina Experiment,”
[20] M. Blasone and G. Vitiello, “Quantum Field Theory of Fermion Mixing,” Annals Physics, Vol. 244, No. 2, 1995, pp. 283-291. doi:10.1006/aphy.1995.1115
[21] M. Blasone, P. A. Henning and G. Vitiello, “The Exact Formula for Neutrino Oscillations,” Physics Letters B, Vol. 451, No. 1-2, 1999, pp. 140-151. doi:10.1016/S0370-2693(99)00155-0
[22] M. Blasone, A. Capolupo, O. Romei and G. Vitiello, “Quantum Field Theory of Boson Mixing,” Physical Review D, Vol. 63, No. 12, 2001, Article ID: 125015. doi:10.1103/PhysRevD.63.125015
[23] M. Blasone, A. Capolupo and G. Vitiello, “Quantum Field Theory of Three Flavor Neutrino Mixing and Oscillations with CP Violation,” Physical Review D, Vol. 66, No. 2, 2002, Article ID: 025033. doi:10.1103/PhysRevD.66.025033
[24] M. Blasone, P. Jizba and G. Vitiello, “Currents and Charges for Mixed Fields,” Physics Letters B, Vol. 517, No. 3-4, 2001, pp. 471-479. doi:10.1016/S0370-2693(01)00985-6
[25] M. Blasone, P. P. Pacheco and H. W. Tseung, “Neutrino Oscillations from Relativistic Flavor Currents,” Physical Review D, Vol. 67, No. 7, 2003, Article ID: 073011. doi:10.1103/PhysRevD.67.073011
[26] M. Blasone and J. S. Palmer, “Mixing and Oscillations of Neutral Particles in Quantum Field Theory,” Phyical Review D, Vol. 69, No. 5, 2004, Article ID: 057301. doi:10.1103/PhysRevD.69.057301
[27] S. Coleman and S. Glashow, “Cosmic Ray and Neutrino Tests of Special Relativity,” Physics Letters B, Vol. 405, No. 3-4, 1997, pp. 249-252. doi:10.1016/S0370-2693(97)00638-2
[28] S. Coleman and S. Glashow, “High-energy tests of Lorentz invariance”, Physical Review D, Vol. 59, 1999, Article ID: 116008. doi:10.1103/PhysRevD.59.116008
[29] C. Pfeifer and M. N. R. Wohlfarth, “Beyond the Speed of Light on Finsler Spacetimes,” Physics Letters B, Vol. 712, 2012, pp. 284-288
[30] H. Pas, S. Pakvasa and T. J. Weiler, “Sterile-Active Neutrino Oscillations and Shortcuts in the Extra Dimension,” Physical Review D, Vol. 72, No. 9, 2005, Article ID: 095017. doi:10.1103/PhysRevD.72.095017
[31] J. Dent, et al., “Neutrino Time Travel,” arXiv:0710.2524.
[32] S. Hollenberg, et al., “Baseline-Dependent Neutrino Oscillations with Extra-Dimensional Shortcuts,” Physical Review D, Vol. 80, No. 9, 2009, Article ID: 093005. doi:10.1103/PhysRevD.80.093005
[33] S. Esposito and G. Salesi, “CPT-Violating Neutrino Oscillations,” Modern Physics Letters A, Vol. 25, No. 8, 2010, pp. 597-606. doi:10.1142/S0217732310032640
[34] N. Mavromatos, “CPT Violation and Decoherence in Quantum Gravity,” Lecture Notes in Physics, Vol. 669, 2005, pp. 245-320.
[35] J. Magueijo and L. Smolin, “Gravity’s Rainbow,” Classical and Quantum Gravity, Vol. 21, No. 7, 2004, pp. 1725-1736. doi:10.1088/0264-9381/21/7/001
[36] D. Kimberly, J. Magueijo and J. Medeiros, “Nonlinear Relativity in Position Space,” Physical Review D, Vol. 70, No. 8, 2004, Article ID: 084007. doi:10.1103/PhysRevD.70.084007
[37] MINOS Collaboration, P. Adamson, et al., “The Minos Experiment,” Physical Review D, Vol. 76, No. 7, 2007, Article ID: 072005. doi:10.1103/PhysRevD.76.072005
[38] J. R. Ellis, et al., “Probes of Lorentz Violation in Neutrino Propagation,” Physical Review D, Vol. 78, No. 3, 2008, Article ID: 033013. doi:10.1103/PhysRevD.78.033013
[39] D. Fargion, “Inconsistence of Super-Luminal Cern-Opera Neutrino Speed with Observed SN1987A Burst and Neutrino Mixing for Any Imaginary Neutrino Mass,” arXiv: 1109.5368.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.