The Geochemistry of Heavy Metals in the Mudflat of Salinas de San Pedro Lagoon, California, USA


Sediment core samples were collected from the Salinas de San Pedro to assess the pollutant deposition processes in response to extensive human activities. Analysis of the sediment samples for heavy metals and some trace elements was conducted with ICP-OES for 20 sites showing enrichment for some of trace and heavy metals. The results demonstrated that heavy metal concentrations in mud varied greatly for each metal, with concentration values (mg/g) ranging from 1.05 - 4.8 (Al); 0.003 - 0.011(As); 0.001 - 0.005 (Cd); 0.02 to 0.82 (Cr); 0.085 - 0.47 (Cu); 5.98 - 14.22 (Fe); 0.06 - 0.19 (Mn); 0.03 - 0.67 (Ni); 0.05 - 0.38 (Pb); <0.008 - 0.069 (Se); 0.18 - 0.63 (Ti); 0.040 - 0.091 (V) and 0.149 - 0.336 (Zn). The Index of Geo-accumulation factor showed highest values for Pb, Mn, As, and Cu. Enrichment factors >1for these elements suggest anthropogenic inputs for most metals. The bioavailability of metals in lagoon sediments has the potential to be highly dynamic with local waste and natural H2S discharge from existing fault line.

Share and Cite:

M. Rezaie-Boroon, V. Toress, S. Diaz, T. Lazzaretto, M. Tsang and D. Deheyn, "The Geochemistry of Heavy Metals in the Mudflat of Salinas de San Pedro Lagoon, California, USA," Journal of Environmental Protection, Vol. 4 No. 1, 2013, pp. 12-25. doi: 10.4236/jep.2013.41002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Bai et al., “Arsenic and Heavy Metal Pollution in Wet land Soils from Tidal Freshwater and Salt Marshes before and After the Flow-Sediment Regulation Regime in the Yellow River Delta, China,” Journal of Hydrology, Vol. 450-451, 2012, pp. 244-253. doi:10.1016/j.jhydrol.2012.05.006
[2] K. Schiff, et al., “Assessing Water Quality in Marine Pro tected Areas from Southern California, USA,” Marine Pollution Bulletin, Vol. 62, No. 12, 2011, pp. 2780-2786. doi:10.1016/j.marpolbul.2011.09.009
[3] U. Forstner and G. Wittman, “Metal Pollution in the Aqua tic Environment,” 2nd Revised Edition, Springer Verlag, New York, 1981. doi:10.1007/978-3-642-69385-4
[4] W. Solomons and U. Forstner, “Metals in the Hydrocy cle,” Springer-Verlag, New York, 1984, p. 349. doi:10.1007/978-3-642-69325-0
[5] S. N. Luorna, et al., “Determination of Selenium Bio availability to a Benthic Particulate and Solute Pathways,” Environmental Science & Technology, Vol. 26, No. 3, 1992, pp. 485-491.
[6] European Commmision, “Establishing a Framework for Community Action in the Field of Water Policy. European Commission,” EC, 2000.
[7] E. A. Jenne and J. M. Zachara, “Factors Influencing the Sorption of Metals,” In: K. L. Dickson, A. W. Maki and W. A. Brungs, Eds., Fate and Effects of Sediment-Bound Chemicals in Aquatic Systems, Pergammon Press, New York, 1987, pp. 83-98.
[8] P. Regnier and R. Wollast, “Distribution of Trace Metals in Suspended Matter of the Scheldt Estuary,” Marine Chemistry, Vol. 43, No. 1-4, 1993, pp. 3-19.
[9] J. R. Pierre Stecko, “Contrasting the Geochemistry of Suspended Particulate Matter and Deposited Sediment of the Fraser River Estuary: Implication for Metal Exposure and Uptake in Estuarine Deposit and Filter Feeder,” Dissertation, 1992, p. 213.
[10] A. Tessier, et al., “Relationships between the Partitioning of Trace Metals in Sediments and their Accumulation in the Tissues of the Freshwater Mollusc Elliptio Compla nata in a Mining Area,” Canadian Journal of Fisheries and Aquatic Sciences, Vol. 41, No. 10, 1984, pp. 1463 1472.
[11] P. G. C. Campbell and A. Tessier, “Geochemistry and Bio availability of Trace Metals in Sediments,” In: A. Boudou and F. Ribeyre, Eds., Aquatic Ecotoxicology: Fundamental Concepts and Methodologies, Vol. 1, CRC Press, Boca Raton, 1989, pp. 125-148.
[12] L. Bendell-Young and H. H. Harvey, “Geochemistry of Mn and Fe in Lake Sediments in Relation to Lake Acidity,” Limnology and Oceanography, Vol. 37, No. 3, 1992, pp. 603-613. doi:10.4319/lo.1992.37.3.0603
[13] J. H. Rule and R. W. Alden, “Cadmium Bioavailability to Three Estuarine Animals in Relation to Geochemical Fractions of Sediments,” Archives of Environmental Contamination and Toxicology, Vol. 19, No. 6, 1996, pp. 878-885. doi:10.1007/BF01055054
[14] C. A. Thomas and L. I. Bendell-Young, “Linking the Geo Chemistry of an Intertidal Region to Metal Bioavailability in the Filter-Feeding Bivalve Macoma Balthica,” Marine Ecology Progress Series, Vol. 173, 1998, pp. 197-213. doi:10.3354/meps173197
[15] J. R. Pierre Stecko and L. I. Bendell-Young, “Contrasting the Geochemistry of Suspended Particulate Matter and Deposited Sediments within an Estuary,” Applied Geochemistary, Vol. 15, No. 6, 2000, pp. 753-775.
[16] G. Adami, P. Barbieri and E. Reisenhofer, “An Improved Index for Monitoring Metal Pollutants in Surface Sediments,” Toxicology and Environmental Chemistry, Vol. 77, No. 3-4, 2000, pp. 189-197. doi:10.1080/02772240009358949
[17] M. Schaadt and E. Mastro, “San Pedro’s Cabrillo Beach,” Arcadia Publishing, Charleston, 2008, p. 128.
[18] Cabrillo Marine Aquarium Educational Handout, “Educators Guide to the Coastal Marine Environment,” 2000, p. 54.
[19] EPA, “Sediment Sampling Guide and Methodologies,” 2001, p. 35.
[20] EPA, “Ohio EPA Manual of Surveillance Methods and Quality Assurance Practices,” Division of Environmental Services, Columbus, 1991.
[21] W. E. Dean, “Determination of Carbonate and Organic Matter in Calcareous Sediments and Sedimentary Rocks by Loss on Ignition. Comparison with Other Methods,” Journal of Sedimentary Petrology, Vol. 44, No. 242, 1974, p. 248.
[22] M. A. MacKnight, “Handbook of Techniques for Aquatic Sediment Sampling,” Lewis Publishers, Chelsea, 1994.
[23] ASTM D 422, “Grain Size Distribution, Standard Test Method for Particle Size Analysis of Soils,” University of Texas at Arlington Geotechnical Engineering Laboratory, 2004, p. 7.
[24] ASTM, “Standard Guide for Collection, Storage, Characterization, and Manipulation of Sediments for Toxico logical Testing,” ASTM Annual Book of Standards, Vol. 11, No. 4, 2004, pp. 1391-1394.
[25] D. D. Deheyn and M. I. Latz, “Bioavailability of Metals along a Contamination Gradient in San Diego Bay (California, USA),” Chemosphere, Vol. 63, No. 5, 2006, pp. 818-834. doi:10.1016/j.chemosphere.2005.07.066
[26] K. Selvaraj, V. R. Mohan and P. Szefer, “Evaluation of Metal Contamination in Coastal Sediments of the Bay of Bengal, India: Geochemical and Statistical Approaches,” Marine Pollution Bulletin, Vol. 49, No. 3, 2004, pp. 174 185.
[27] J. Valdes, et al., “Distribution and Enrichment Evaluation of Heavy Metals in Mejillones Bay (23?S), Northern Chile: Geochemical and Statistical Approach,” Marine Pollution Bulletin, Vol. 50, No. 12, 2005, pp. 1558-1568. doi:10.1016/j.marpolbul.2005.06.024
[28] C. W. Chen, et al., “Distribution and Accumulation of Heavy Metals in the Sediments of Kaohsiung Harbor, Taiwan,” Chemosphere, Vol. 66, No. 8, 2007, pp. 1431 1440. doi:10.1016/j.chemosphere.2006.09.030
[29] K. Gnandi, et al., “Increased Bioavailability of Mercury in the Lagoons of Lomé, Togo: The Possible Role of Dredging,” AMBIO, Vol. 40, No. 1, 2010, pp. 26-42. doi:10.1007/s13280-010-0094-4
[30] K. K. Turekian and K. H. Wedepohl, “Distribution of the Elements in some Major Units of the Earth’s Crust,” Geo logical Society of America Bulletin, Vol. 72, No. 2, 1961, pp. 175-191. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2
[31] Ergin, M., et al., “Heavy Metal Concentrations in Surface Sediments from the Two Coastal Inlets (Golden Horn Estuary and Izmit Bay) of the Northeastern Sea of Marmara,” Chemical Geology, Vol. 91, No. 3, 1991, pp. 269 285. doi:10.1016/0009-2541(91)90004-B
[32] P. Szefer, G. P. Glasby and A. Kusak, “Evaluation of the Anthropogenic Influx of Metallic Pollutants into Puck Bay, Southern Baltic,” Applied Geochemistry, Vol. 13, No. 3, 1998, pp. 293-304. doi:10.1016/S0883-2927(97)00098-X
[33] S. R. Taylor and S. M. McLennan, “The Geochemical Evolution of the Continental Crust,” Reviews of Geophysics. Vol. 33, No. 2, 1995, pp. 241-265
[34] G. Birth, “A Scheme for Assessing Human Impacts on Coastal Aquatic Environments Using Sediments,” In: C. D. Woodcofie and R. A. Furness, Eds., Coastal GIS, Wollongong University Papers in Center for Maritime Policy, Australia, 2003.
[35] G. Müller, “Chemical Decontamination of Dredged Materials, Combustion Residues, Soil and Other Materials Contaminated with Heavy Metals,” In: W. Wolf, J. Van deBrink and F. J. Colon, Eds., 2nd International TNO/ BMFT Conference on Contaminated Soil, Vol. 2, 1988, pp. 1439-1442.
[36] U. A. F?rstner, C. Wolfgang and M. Kersten, “Sediment Criteria, Development,” In. D. Heling, P. Rothe and U. F?rstner, Eds., Sediments and Environmental Geochemistry, Vol. 1, 1990, pp. 311-338. doi:10.1007/978-3-642-75097-7_18
[37] J. H. Shaw, “Subsurface Geometry and Segmentation of the Palos Verdes Fault and their Implications for Earth quake Hazards in Southern California,” Technical Report, National Earthquake Hazard Reduction Program Award, No. 6, 2007, p. 20.
[38] 2009.
[39] M. R. Sheikholeslami and S. De Mora, “ASTP: Contaminant Screening Program; Final Report: Interpretation of Caspian Sea Sediment Data,” IAEA-Marine Environment Laboratory Internal Report, 2002.
[40] J. Zhang and C. L. Liu, “Riverine Composition and Estuarine Geochemistry of Particulate Metals in China— Weathering Features, Anthropogenic Impact and Chemical Fluxes,” Estuarine, Coastal and Shelf Science, Vol. 54, No. 6, 2002, pp. 1051-1070. doi:10.1006/ecss.2001.0879
[41] H. Yongming, et al., “Multivariate Analysis of Heavy Metal Contamination in Urban Dusts of Xi’an, Central China,” Science of the Total Environment, Vol. 355, No. 1-3, 2006, pp. 176-186.
[42] S. Han, A. Obraztsova, et al., “Sulfide and Iron Control on Mercury Speciation in Anoxic Estuarine Sediment Slurries,” Marine Chemistry, Vol. 111, No. 3-4, 2008, pp. 214-220. doi:10.1016/j.marchem.2008.05.002
[43] J. Santos-Echeandía, et al., “Metal Composition and Fluxes of Sinking Particles and Post-Depositional Transformation in a Ria Coastal System (NW Iberian Peninsula),” Marine Chemistry, Vol. 134-135, 2012, pp. 36-46. doi:10.1016/j.marchem.2012.02.006
[44] N. Karbanee, R. P. van Hill and R. P. Lewis, “Controlled Nickel Sulfide Precipitation using Gaseous Hydrogen Sulfide,” Industrial & Engineering Chemistry Research, Vol. 47, No. 5, 2008, pp. 1596-1602. doi:10.1021/ie0711224
[45] T. P. Mokone, R. P. Van Hille and A. E. Lewis, “Metal Sulphides from Wastewater: Assessing the Impact of Supersaturation Control Strategies,” Water Research, Vol. 46, No. 7, 2012, pp. 2088-2100. doi:10.1016/j.watres.2012.01.027
[46] J. E. Andrews, et al., “An Introduction to Environmental Chemistary,” 2nd Edition, Blackwell Publishing, 2004.
[47] J. E. McLean and B. E. Bledsoe, “Behavior of Metals is Soils,” USEPA Ground Water, 1992, pp. 1-25.
[48] K. Vanbroekhoven, et al., “Varying Redox Conditions Changes Metal Behavior Due to Microbial Activities,” Geophysical Research Abstracts, Vol. 8, 2006, p. 2292.
[49] G. Fliep, “Behavior and Fate of Pollutants in Soil,” In: G. Filep, Ed., Soil Pollution, Agricultural University of Debrecens, 1998, pp. 21-49.
[50] G. Du Laing, et al., “Effect of Salinity on Heavy Metal Mobility and Availability in Intertidal Sediments of the Scheldt Estuary,” Estuarine, Coastal and Shelf Science, Vol. 77, No. 4, 2008, pp. 589-602.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.