The Charge Storage of Doubly Stacked Nanocrystalline-Si based Metal Insulator Semiconductor Memory Structure

Abstract

Doubly stacked nanocrystalline-Si (nc-Si) based metal insulator semiconductor memory structure was fabricated by plasma enhanced chemical vapor deposition. Capacitance-Voltage (C-V) and capacitance-time (C-t) measurements were used to investigate electron tunnel, storage and discharging characteristic. The C-V results show that the flatband voltage increases at first, then decreases and finally increases, exhibiting a clear deep at gate voltage of 9 V. The de-creasing of flatband voltage at moderate programming bias is attributed to the transfer of electrons from the lower nc-Si layer to the upper nc-Si layer. The C-t measurement results show that the charges transfer in the structure strongly de-pends on the hold time and the flatband voltage decreases markedly with increasing the hold time.

Share and Cite:

Wang, X. , Song, C. , Guo, Y. , Song, J. and Huang, R. (2013) The Charge Storage of Doubly Stacked Nanocrystalline-Si based Metal Insulator Semiconductor Memory Structure. Modeling and Numerical Simulation of Material Science, 3, 20-22. doi: 10.4236/mnsms.2013.31B006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] S. Tiwari, F. Rama, H. Hanafi, A. Hartstein, E. F. Crabbe and K. Chan, “A silicon nanocrystals based memory,”Appl. Phys. Lett ,Vol. 68, 1996, pp. 1377-1379. doi: 10.1063/1.116085
[2] T. Feng, H. B. Yu, M. Dicken, J. R. Heath, and H. A. Atwater, “Probing the size and density of silicon nanocrystals in nanocrystal memory device applications,” Appl. Phys. Lett., Vol. 86, 2005, pp. 033103. doi:10.1063/1.1852078
[3] S. Y. Huang and S. Oda, “Charge storage in nitrided nanocrystalline silicon dots,” Appl. Phys. Lett., Vol. 87, 2005, pp. 173107. doi:10.1063/1.2115069
[4] M. Dai, K. Chen, X. F. Huang, L. C. Wu and K. J. Chen, “Formation and charging effect of Si nanocrystals in a-SiNx/a-Si/a-SiNx structures,” J. Appl. Phys., Vol. 95, 2004, pp. 640-645. doi:10.1063/1.1633649
[5] X. Zhou, K. Uchida, and S. Oda, “Current fluctuations in three-dimensionally stacked Si nanocrystals thin films,” Appl. Phys. Lett., Vol. 96, 2010, pp. 092112. doi:10.1063/1.3294329
[6] T. C. Chang, S. T. Yan, P. T. Liu, H. H. Wu, and S. M. Sze, “Quasisuperlattice storage: A concept of multilevel charge storage,” Appl. Phys. Lett., Vol. 85, 2004, pp. 248-250. doi:10.1063/1.1772873
[7] T. Z. Lu, M. Alexe, R. Scholz, V. Talelaev, and M. Zacharias, “Multilevel charge storage in silicon nanocrystal multilayers,” Appl. Phys. Lett., Vol. 87, 2005, pp. 202110. doi:10.1063/1.2132083
[8] T. Z. Lu, M. Alexe, R. Scholz, V. Talalaev, R. J. Zhang, and M. Zacharias, “Si nanocrystal based memories: Effect of the nanocrystal density,” J. Appl. Phys., Vol. 100, 2006, pp. 014310. doi:10.1063/1.2214300
[9] L. C. Wu, K. J. Chen, J. M. Wang, X. F. Huang, Z. T. Song, and W. L. Liu, “Charge retention enhancement in stack nanocrystalline Si based metal insulator semiconductor memory structure, ” Appl. Phys. Lett., Vol. 89, 2006, pp. 112118. doi:10.1063/1.2352796
[10] J. Wang, L. Wu, K. Chen, L. Yu, X. Wang, J. Song, and X. Huang, “Charge storage in self-aligned doubly stacked Si nanocrystals in SiNx dielectric,” J. Appl. Phys., Vol. 101, 2007, pp. 014325. doi:10.1063/1.2409280
[11] L. C. Wu, M. Dai, X. F. Huang, W. Li, and K. J. Chen, “Size-dependent resonant tunneling and storing of electrons in a nanocrystalline silicon floating gate double barrier structure,” J. Vac. Sci. Technol. B, Vol. 22, 2004, pp. 678-681. doi:10.1116/1.1676527
[12] T. H. Ng, W. K. Chim, and W. K. Choi, “Conductance voltage measurements on germanium nanocrystal memory structures and effect of gate electric field coupling,” Appl. Phys. Lett., Vol. 88, 2006, pp. 113112. doi:10.1063/1.2186738
[13] A. Sawada, “Internal electric fields of electrolytic solutions induced by space-charge polarization,” J. Appl. Phys., Vol. 100, 2006, pp. 074103. doi:/10.1063/1.2355449

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.