Low Temperature Electrical Transport in Double Layered CMR Manganite La1.2Sr1.4Ba0.4Mn2O7

Abstract

The electrical transport behavior and magnetoresistance (MR) of a polycrystalline double layered manganite La1.2Sr1.4Ba0.4Mn2O7, synthesized by the sol-gel method, are investigated in the temperature range 4.2 K - 300 K. The sample exhibits an insulator-to-metal transition at 87 K (TIM) and the spin-glass (SG)-like behavior is observed below 50 K (TSG). The transport behavior is analyzed in the entire temperature range considering three different regions: paramagnetic insulating region (T>TIM), ferromagnetic metallic region (TSG < T < TIM) and antiferromagnetic insulating region (TSG) by fitting the temperature dependent resistivity data to the equations governing the conduction process in the respective temperature regions. The results show that the conduction at T>TIM follows Mott variable range hopping (VRH) process, while the two-magnon scattering process is evidenced at TSG < T < TIM which is suppressed with the applied magnetic field of 4 T. The low temperature conductivity data are also fitted with Mott VRH equation. The sample exhibits a large MR (≈45%) over a temperature range     5 K – 50 K and it shows ≈32% MR at 5 K with a magnetic field of 0.5 T.

Share and Cite:

Y. Reddy, P. Kistaiah and C. Vishnuvardhan Reddy, "Low Temperature Electrical Transport in Double Layered CMR Manganite La1.2Sr1.4Ba0.4Mn2O7," Advances in Materials Physics and Chemistry, Vol. 2 No. 4B, 2012, pp. 49-52. doi: 10.4236/ampc.2012.24B014.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, “Giant magnetoresistance of manganese oxides with a layered perovskite structure”, Nature (London), vol. 380, pp. 141-144, March 1996.
[2] Y. Moritomo, A. Asamitsu, H. Kuwahara, and Y. Tokura, “Giant magnetoresistance of manganese oxides with a layered perovskite structure”, Nature (London), vol. 380, pp. 141-144, March 1996.
[3] T. Kimura, Y.Tomioka, H. Kuwahara, A. Asamitsu, M.Tamura, and Y.Tokura, “Interplane tunneling magnetoresistance in a layered manganite crystal”, Science, vol. 274, pp. 1698 – 1701, December 1996.
[4] Hong Zhu, XianMing Liu, KeQing Ruan, and YuHeng Zhang, “Magnetic inhomogeneity and variable-range hopping transport at temperatures above the ferromagnetic transition in La1.4Sr1.6Mn2-yTiyO7 system”, Phys. Rev. B,vol. 65, pp. 104424 (1-7), February 2002.
[5] E. O. Chi, Y.-U. Kwon, J.-T. Kim, and N. H. Hur, “Lattice effects on the magnetic and transport properties in La1.4Sr1.6-xAxMn2O7 (A = Ca, Ba)”, Solid State Commun., vol. 110, pp. 569, 1999.
[6] S. Okamoto, S. Ishihara, and S. Maekawa, “Orbital structure and magnetic ordering in layered manganites: Universal correlation and its mechanism”, Phys. Rev. B, vol. 63, pp. 104401 (1-6), February 2001.
[7] C. L. Zhang, X. J. Chen, C. C. Almasan, and J. S. Gardner, J. L. Sarrao, “Low-temperature electrical transport in bilayer manganite La1.2Sr1.8Mn2O7”, Phys. Rev. B, vol. 65, pp. 134439 (1-6), March 2002.
[8] S. Chatterjee, P. H. Chou, C. F. Chang, I. P. Hong, and H. D. Yang, “Lattice effects on the transport properties of (R,Sr)3Mn2O7 (R = La, Eu, Pr)”, Phys. Rev. B, vol. 61, pp. 6106 – 6113, March 2000.
[9] H. Zhu, D. Zhu, and Y. Zhang, “Effect of lattice expansion on the magnetotransport properties in layered manganites La1.4Sr1.6-yBayMn2O7”, J. Appl. Phys., vol. 92, pp. 7355 – 7361, December 2002.
[10] S. B. Ogale, V. Talyansky, C. H. Chen, R. Ramesh, R. L. Green, and T. Venkatesan, “Unusual electric field effects in Nd0.7Sr0.3MnO3”, Phys. Rev. Lett., vol. 77, pp. 1159 – 1162, August 1996.
[11] G. Jeffrey Snyder, R. Hiskes, S. Dicarolis, M. R. Beasley, and T. H. Geballe, “Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material”, Phys. Rev. B, vol. 53, pp. 14434 – 14444, June 1996.
[12] M. Jaime, H.T. Hardner, M.B. Salamon, M. Rubinstein, P. Dorsey, and D. Emin, “Hall-effect sign anomaly and small-polaron conduction in (La1-xGdx)0.67Ca0.33MnO3”, Phy. Rev. Lett., vol. 78, pp. 951-954, February 1997.
[13] M. Viret, L. Ranno, and J. M. D. Coey, “Colossal magnetoresistance of the variable range hopping regime in the manganites”, J Appl. Phys., vol. 81, pp. 4964 – 4966, April 1997.
[14] Yu Wang and Jorge J. Santiago-Aviles, “Large negative magnetoresistance and strong localization in highly disordered electrospun pregraphitic carbon nanofiber”, Appl. Phys. Lett., vol. 89, pp. 123119 (1-3), September 2006.
[15] D. S. Rana, C. M. Thaker, K. R. Mavani, D. G. Kuberkar, Darshan C. Kundaliya, and S. K. Malik, “Magnetic and transport properties of (La0.7-2xEux)(Ca0.3Srx)MnO3: Effect of simultaneous size disorder and carrier density”, J. Appl. Phys., vol. 95, pp. 4934 - 4940, May 2004.
[16] M. Matsukawa, M. Chiba, E. Kikuchi,R. Suryanarayanan, M. Apostu, S. Nimori, K. Sugimoto, and N. Kobayashi, “Effect of suppression of local distortion on the magnetic, electrical, and thermal transport properties of the Cr-substituted bilayer manganite LaSr2Mn2O7”, Phys. Rev. B, vol. 72, pp. 224422 (1-8), December 2005.
[17] M. H. Ehsani, P.Kameli, and M. E.Ghazi, “Influence of grain size on the electrical properties of the double-layered LaSr2Mn2O7 manganite”, J. Phys. Chem. Sol., vol. 73, pp. 744–750, 2012.
[18] Aritra Banerjee, S. Pal, and B. K. Chaudhuria, “Nature of small-polaron hopping conduction and the effect of Cr doping on the transport properties of rare-earth manganite La0.5Pb0.5Mn1-xCrxO3”, J. Chem. Phys., vol. 115, pp. 1550-1558, July 2001.
[19] Hong Zhu, XiaoJun Xu, Li Pi, and YuHeng Zhang, “ Two-dimensional magnetic correlation and transport behavior of layered manganite La1.4Sr1.6Mn2-xCuxO7”. Phys. Rev. B, vol. 62, pp. 6754-6760, September, 2000.
[20] R. L. Zhang, W. H. Song, Y. Q. Ma, J. Yang, B. C. Zhao, Z. G. Sheng, J. M. Dai, and Y. P. Sun, “Influence of Co doping on the charge-ordering state of the bilayered manganite LaSr2Mn2O7”, Phys. Rev. B., vol. 70, pp. 224418 (1-6), December 2004.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.