[1]
|
K. L. Cooke, Stability analysis for a vector disease model, Rocky Mountain J. Math., vol. 9, 1979, pp. 31-42.
|
[2]
|
M. Y. Li, J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., vol.125, 1995, pp. 155-168.
|
[3]
|
J. Zhang, Z. E. Ma, Gobal dynamics of an SEIR epidemic moel with saturating contact rate, Mathy. Biosci., vol.185, 2003, pp. 15-32.
|
[4]
|
R. Xu, Z. E. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal. Real World Appli., vol. 10, 2009, pp. 3175-3189.
|
[5]
|
X. L. Hu, F. G. Sun and C. X. Wang, Global analysis of SIR epidemic model with the aturated contact rate and vertical transmission, Basic Sciences Journal of Textile Universities, vol.23, 2010, pp. 120-122.
|
[6]
|
Y. N. Xiao and L. S. Chen, Modeling and analysis of a predator-prey model with disease in the prey}, Math. Biosci., vol.171, 2001, pp. 59-82.
|
[7]
|
Y. Kuang, Delay differential equations with applications in population dynamics, Boston: Academic Press, 1993.
|
[8]
|
J. L. Liu, T. L. Zhang, J. X. Lu, An impulsive controlled eco-epidemic model with disease in the prey, J. Appl. Math. Comput., to appear.
|