[1]
|
Sebastian, D.E., Coates, D.J. and Parks, G.T. (2012) A novel method for rapid comparative quantitative analysis of nuclear fuel cycles. Annals of Nuclear Energy, 42, 80-88. doi:10.1016/j.anucene.2011.12.013
|
[2]
|
Romney, B.D. and Bhaskar, S. (2011) Towards a sustainable future using pressure tube reactor technology. Energy Procedia, 7, 286-292.
doi:10.1016/j.egypro.2011.06.037
|
[3]
|
IAEA (2012) Role of thorium to supplement fuel cycles of future nuclear energy systems. IAEA, Vienna.
|
[4]
|
IAEA (2005) Thorium fuel cycle—Potential benefits and challenges. IAEA, Vienna.
|
[5]
|
IAEA (2002) Thorium fuel utilization: Options and trends. IAEA-TECDOC-1319. IAEA, Vienna.
|
[6]
|
IAEA (2000) Thorium based fuel options for the generation of electricity: Developments in the 1990s. IAEA- TECDOC-1155. IAEA, Vienna.
|
[7]
|
IAEA (1987) Utilization of thorium-based nuclear fuel: Current status and perspectives (Proc. TCM, Vienna). IAEA- TECDOC-412, IAEA, Vienna.
|
[8]
|
IAEA (1979) Status and prospects of thermal breeders and their effect on fuel utilization. Technical Reports Series No. 195, IAEA, Vienna.
|
[9]
|
IAEA (1966) Utilization of thorium in power reactors. Technical Reports Series No. 52, IAEA, Vienna.
|
[10]
|
Csom, Gy., Reiss, T., Fehér, S. and Czifrus Sz. (2012) Thorium. Annals of Nuclear Energy, 41, 67-78.
|
[11]
|
Nuttin, A., Guillemin, P., Bidaud, A., Capellan, N., Chambon, R., David, S., Méplan, O. and Wilson, J.N. (2012) Comparative analysis of high conversion achievable in thorium-fueled slightly modified CANDU and PWR reactors. Annals of Nuclear Energy, 40, 171-189.
doi:10.1016/j.anucene.2011.08.014
|
[12]
|
Okawa, T., Nakayama, S. and Sekimoto, H. (2012) Design study on power flattening to sodium cooled largescale CANDLE burning core with using thorium fuel. Energy Conversion and Management, 53, 182-188.
doi:10.1016/j.enconman.2011.06.006
|
[13]
|
Banerjee, S. and Govindan Kutty, T.R. (2012) Functional Materials. Nuclear Fuels, 10, 387-466.
|
[14]
|
Breza, J., Da?ílek, P. and Ne?as, V. (2010) Study of thorium advanced fuel cycle utilization in light water reactor VVER-440. Annals of Nuclear Energy, 37, 685-690.
doi:10.1016/j.anucene.2010.02.003
|
[15]
|
Yu, J.Y., Wang, K., You, S.B., Jia, B.S., Shen, S.F., Shi, G., Sollychin, R. and Ruan, Y.Q. (2004) Thorium fuel cycle of a thorium-based advanced nuclear energy system. Progress in Nuclear Energy, 45, 71-83.
doi:10.1016/j.pnueene.2004.07.004
|
[16]
|
Rodriguez, P. and Sundaram, C.V. (1981) Nuclear and materials aspects of the thorium fuel cycle. Journal of Nuclear Materials, 100, 227-249.
doi:10.1016/0022-3115(81)90534-1
|
[17]
|
Balakrishnan, K., Majumdar, S., Ramanujam, A. and Kakodkar, A. (2002) The Indian perspective on thorium fuel cycles. Thorium Fuel Cycle: Options and Trends, IAEA TECDOC-1319, 257-265.
|
[18]
|
Anantharaman, K., Shivakumar, V. and Saha, D. (2008) Utilisation of thorium in reactors. Journal of Nuclear Materials, 383, 119-121.
doi:10.1016/j.jnucmat.2008.08.042
|
[19]
|
Shuller, L.C., Ewing, R.C. and Becker, U. (2011) Thermodynamic properties of ThxU1?xO2 (0 < x < 1) based on quantum-mechanical calculations and Monte-Carlo simulations. Journal of Nuclear Materials, 412, 13-21.
|
[20]
|
Ananatharaman, V., Shivakumar, V. and Saha, D. (2008) Utilization of thorium in reactors. Journal of Nuclear Materials, 383, 119-121.
|
[21]
|
Banerjee, J., Kutty, T.R.G., Kumar, A., Kamath, H.S. and Banerjee, S. (2011) Densification behavior and sintering kinetics of ThO2-4%UO2 pellet. Journal of Nuclear Materials, 408, 224-230.
doi:10.1016/j.jnucmat.2010.11.029
|
[22]
|
Johnson, J.R. and Curtis, C.E. (1954) Note on sintering of thoria. Journal of the American Ceramic Society, 37, 611.
doi:10.1111/j.1151-2916.1954.tb13996.x
|
[23]
|
Harada, Y., Baskin, Y. and Handwerk, J.H. (1962) Calcination and sintering study of thoria. American Ceramic Society, 45, 253-257.
doi:10.1111/j.1151-2916.1962.tb11139.x
|
[24]
|
Pope, J.M. and Radford, K.C. (1974) Physical properties of some thoria powders and their influence on sinterability. Journal of Nuclear Materials, 52, 241-254
doi:10.1016/0022-3115(74)90171-8
|
[25]
|
Shiratori, T. and Fukuda, K. (1993) Fabrication of very high density fuel pellets of thorium dioxide. Journal of Nuclear Materials, 202, 98-103
doi:10.1016/0022-3115(93)90033-U
|
[26]
|
Balakrishna, P. (1994) Characterization and sintering of thorium dioxide. Ph.D. Dissertation, Indian Institute of Technology, Bombay.
|
[27]
|
White, G.D., Bray, L.A. and Hart, P.E. (1981) Optimization of thorium oxalate precipitation conditions relative to derived oxide sinterability. Journal of Nuclear Materials, 96, 305-313. doi:10.1016/0022-3115(81)90574-2
|
[28]
|
Altas, Y., Eral, M. and Tel, H. (1997) Preparation of homogeneous (Th0.8U0.2)O2 pellets via coprecipitation of (Th,U)(C2O4)2?nH2O powders. Journal of Nuclear Materials, 249, 46-51. doi:10.1016/S0022-3115(97)00185-2
|
[29]
|
Dash, S., Singh, A., Ajikumar, P.K., Subramaniam, H., Rajalakshmi, M., Tyagi, A.K., Arora, A.K., Narasimhan, S.V. and Raj, B. (2002) Synthesis and characterization of nanocrystalline thoria obtained from thermally decomposed thorium carbonate. Journal of Nuclear Materials, 303, 156-168. doi:10.1016/S0022-3115(02)00816-4
|
[30]
|
Chandramouli, V., Anthonysamy, S., Vasudeva Rao, P.R., Divakar, R. and Sudararaman, R. (1996) PVA aided microwave synthesis: A novel route for the production of nanocrystalline thoria powder. Journal of Nuclear Materials, 231, 213-220. doi:10.1016/0022-3115(96)00368-6
|
[31]
|
Purohit, R.D., Saha, S. and Tyagi, A.K. (2001) Nanocrystalline thoria powders via glycine-nitrate combination. Journal of Nuclear Materials, 288, 7-10.
doi:10.1016/S0022-3115(00)00717-0
|
[32]
|
Kutty, T.R.G., Khan, K.B., Hegde, P.V., Banerjee, J., Sengupta, A.K., Majumdar, S. and Kamath, H.S. (2004) Development of a master sintering curve for ThO2. Journal of Nuclear Materials, 327, 211-219.
doi:10.1016/j.jnucmat.2004.02.007
|
[33]
|
Hingant, N., Clavier, N., Dacheux, N., Barre, N., Hubert, S., Obbade, S., Taborda, F. and Abraham, F. (2009) Preparation, sintering and leaching of optimized uranium thorium dioxides. Journal of Nuclear Materials, 385, 400-406.
doi:10.1016/j.jnucmat.2008.12.011
|
[34]
|
Hingant, N., Clavier, N., Dacheux, N., Hubert, S., Barré, N., Podor, R. and Aranda, L. (2011) Preparation of morphology controlled Th(1?x)UxO2 sintered pellets from low-temperature precursors. Powder Technology, 208, 454- 460. doi:10.1016/j.powtec.2010.08.042
|
[35]
|
Joseph, K., Sridharan, R. and Gnanasekaran, T. (2000) Kinetics of thermal decomposition of Th(C2O4)2?6H2O. Journal of Nuclear Materials, 281, 129-139.
doi:10.1016/S0022-3115(00)00241-5
|
[36]
|
Belle, J. and Berman, R.M. (1981) Thorium dioxide— Properties and nuclear applications. Technical Report, DOE/ NE-0060.
|
[37]
|
MacDonald, P.E. (2002) Advanced proliferation resistant, lower cost, uranium—Thorium dioxide fuels for light water reactors. Idaho National Engineering and Environmental Laboratory INEEL/EXT-02-01411.
|
[38]
|
Shiratori, T. and Fukuda, K. (1993) Fabrication of very high density fuel pellets of thorium dioxide. Journal of Nuclear Materials, 202, 98-103.
doi:10.1016/0022-3115(93)90033-U
|
[39]
|
Matzke, H. (1966) Diffusion in doped UO2. Nuclear Applications, 2, 131.
|
[40]
|
Matzke, H. (1967) Xenon migration and trapping in doped ThO2. Journal of Nuclear Materials, 21, 190-198.
doi:10.1016/0022-3115(67)90149-3
|
[41]
|
Balakrishna, P., Varma, B.P., Krishnan, T.S., Mohan, T.R.R. and Ramakrishnan, P. (1988) Thorium oxide: Calcination, compaction and sintering. Journal of Nuclear Materials, 160, 88-94. doi:10.1016/0022-3115(88)90012-8
|
[42]
|
Balakrishna, P., Varma, B.P., Krishnan, T.S., Mohan, T.R.R. and Ramakrishnan, P. (1988) Low temperature sintering of thoria. Journal of Materials Science Letters, 7, 657-660.
doi:10.1007/BF01730326
|
[43]
|
Ananthasivan, K., Anthonysamy, S., Sudha, C., Terrance, A.L.E. and Vasudeva Rao, P.R. (2002) Thoria doped with cations of Group VB—Synthesis and sintering. Journal of Nuclear Materials, 300, 217-229.
doi:10.1016/S0022-3115(01)00736-X
|
[44]
|
Weinreich, A.W., Britton, W.H., Hutchison, C.R., Johnson, R.G.R. and Burke, T.J. (1977) Fabrication of high density, high integrity thorium based fuel pellets. Transactions of the American Nuclear Society, 27, 305-307.
|
[45]
|
Wymer, R.G. 1974) In: Proceedings of the Panel Discussion on Sol Gel Processes for Fuel Fabrication, IAEA, 161, 129.
|
[46]
|
Onofrei, M. (1986) Sol gel extrusion process for fabrication of (Th,U)O2 recycle fuel. Journal of Nuclear Materials, 137, 207-211. doi:10.1016/0022-3115(86)90221-7
|
[47]
|
Grosse, K.-H., Hrovat, M. and Seemann, R. (2009) Manufacturing technology for thorium based fuel elements. CQCNF 2009, Hyderabad.
|
[48]
|
Egeland, G.W., Zuck, L.D., Cannon, W.R, Lessing, P.A. and Medvedev, P.G. (2010) Dry bag isostatic pressing for improved green strength of surrogate nuclear fuel pellet. Journal of Nuclear Materials, 406, 205-211.
doi:10.1016/j.jnucmat.2010.08.022
|
[49]
|
Yamagishi, S. and Takahashi, Y. (1995) High density (Th,U)O2 pellet preparation by sol gel microsphere pelletization and diluted hydrogen sintering. Journal of Nuclear Materials, 227, 144-149. doi:10.1016/0022-3115(95)00125-5
|
[50]
|
Matthews, R.B. and Hart, P.E. (1980) Nuclear fuel pellets fabricated from gel-derived microspheres. Journal of Nuclear Materials, 92, 207-216.
doi:10.1016/0022-3115(80)90104-X
|
[51]
|
Kutty, T.R.G., Khan, K.B., Somayajulu, P.S., Sengupta, A.K., Panakkal, T.P., Kumar, A. and Kamath H.S. (2008) Development of CAP process for fabrication of ThO2- UO2 fuels Part 1: Fabrication and densification behavior. Journal of Nuclear Materials, 373, 299-308.
doi:10.1016/j.jnucmat.2007.06.010
|
[52]
|
Kutty, T.R.G., Kulkarni, R.V., Sengupta, A.K., Panakkal, T.P., Kumar, A. and Kamath, H.S. (2008) Development of CAP process for fabrication of ThO2-UO2 fuels Part II: Characterization and property evaluation. Journal of Nuclear Materials, 373, 309-318.
doi:10.1016/j.jnucmat.2007.06.011
|
[53]
|
Kutty, T.R.G., Somayajulu, P.S., Khan, K.B., Kumar, A. and Kamath, H.S. (2009) Characterization of (Th,U)O2 pellets made by advanced CAP process. Journal of Nuclear Materials, 384, 303-310.
doi:10.1016/j.jnucmat.2008.12.038
|
[54]
|
Kutty, T.R.G., Khan, K.B., Achutan, P.V., Dhami, P.S., Dakshinamoorthy, A., Somayajulu, P.S., Panakkal, T.P., Kumar, A. and Kamath, H.S. (2009) Characterization of ThO2-UO2 pellets made by co-precipitation process. Journal of Nuclear Materials, 389, 351-358.
doi:10.1016/j.jnucmat.2008.12.334
|
[55]
|
Khot, P.M., Nehete, Y.G., Fulzele, A.K., Baghra, C., Mishra, A.K., Afzal, M., Panakkal, T.P. and Kamath, H.S. (2012) Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O2 mixed oxide pellets. Journal of Nuclear Materials, 420, 1-8.
doi:10.1016/j.jnucmat.2011.09.006
|
[56]
|
Kutty, T.R.G., Nair, M.R., Sengupta, P., Basak, U., Kumar, A. and Kamath H.S. (2008) Characterization of (Th,U)O2 fuel pellets made by impregnation technique. Journal of Nuclear Materials, 374, 9-19.
doi:10.1016/j.jnucmat.2007.07.004
|
[57]
|
Glodeanu, F. (1984) Fabrication of high density thoria urania fuel pellets. Journal of Nuclear Materials, 126, 181- 183. doi:10.1016/0022-3115(84)90089-8
|
[58]
|
Ananthasivan, K., Anthonysamy, S., Singh, A., Vasudeva Rao, P.R. (2002) De-agglomeration of thorium oxalate— A method for the synthesis of sinter active thoria. Journal of Nuclear Materials, 306, 1-9.
doi:10.1016/S0022-3115(02)01229-1
|
[59]
|
Chandramouli, V., Anthonysamy, S., Vasudeva Rao, P.R., Divakar, R. and Sundararaman, D. (1998) Microwave synthesis of solid solutions of urania and thoria—A comparative study. Journal of Nuclear Materials, 254, 55-64.
doi:10.1016/S0022-3115(97)00281-X
|
[60]
|
Anthonysamy, S., Ananthasivan, K., Chandramouli, V., Kaliappan, I. and Vasudeva Rao, P.R. (2000) Combustion synthesis of urania thoria solid solutions. Journal of Nuclear Materials, 278, 346-357.
doi:10.1016/S0022-3115(99)00267-6
|
[61]
|
Balakrishna, P., Nandi, D., Narayanan, P.S.A. and Somayajulu, G.V.S.R.K. (1986) Investigation of alternative routes for producing UO2-Gd2O3 mixed oxide for nuclear fuel applications. In: Ramanujam, M., Ed., Advances In Particulate Technology, IIT, Madras, 719-731.
|
[62]
|
Balakrishna, P., Kulkarni, A.P., Somayajulu, G.V.S.R.K., Swaminathan, N. and Balaramamoorthy, K. (1991) Sintering of UO2-Gd2O3. In: Vincenzini, P., Ed., Ceramics Today—Tomorrow’s Ceramics—Materials Science Monograph 66D, Elsevier, Amsterdam, 3003-3016.
|