Heroin-induced changes of CD34-positive rat thymus cells

Abstract

Heroin is a well known opioid that causes al-terations to the immune system of a number of investigated animals. Only a few studies have explored the effect of heroin on the lymphocytes maturation. Thymocyte progenitors originate from haematopoietic stem cells in the bone marrow. The immature T-cells express neither CD4 nor CD8, and are therefore classed as double-negative (CD4-CD8-) cells. CD34 glycoprotein is the only defined marker of the immature T-lymphocytes. In this study we have investigated the changes induced in CD34+ rat thymocytes after heroin administration by immunofluores-cence in frozen rat thymus sections using the 4H11 monoclonal anti-CD34 antibody. There is a remarkable decrease in the number of CD34+ immature thymocytes when examined 1hour after last heroin injection and a small recover when examination took place 20 days after last injection. The above results suggest a major effect of heroin administration early in the ma- turation process of T lymphocytes probably by increasing the apoptotic cell death and the ne- gative consequences for the immune system responses.

Share and Cite:

Fotini, G. , Despina, P. , Evangelos, M. , Ourania, K. and Theodoros, K. (2010) Heroin-induced changes of CD34-positive rat thymus cells. Health, 2, 957-961. doi: 10.4236/health.2010.28142.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Vizi, E.S., Orsó, E., Osipenko, O.N., Haskó, G. and Elenkov, I.J. (1995) Neurochemical, electrophysiological and immunocytochemical evidence for a noradrenergic link between the sympathetic nervous system and thy-mocytes, Neuroscience, 68(4), 1263-1276.
[2] Klous, M.G., Van den Brink, W., Van Ree, J.M. and Bei-jnen, J.H. (2005) Development of pharmaceutical heroin preparations for medical co-prescription to opioid de-pendent patients. Drug Alcohol Depend, 80(3), 283-295.
[3] Mahajan, S.D., Schwartz, S.A., Aalinkeel, R., Chawda, R.P., Sykes, D.E. and Nair, M.P. (2005) Morphine modu-lates chemokine gene regulation in normal human astro-cytes. Clinical Immunology, 115(3), 323-332.
[4] Vallejo, R., de Leon-Casasola, O. and Benyamin, R. (2004) Opioid therapy and immunosuppression: A review American Journal of Therapeutics, 11(5), 354-365.
[5] Friedman, H. and Eisenstein, T.K. (2004) Neurological basis of drug dependence and its effects on the immune system. Journal of Neuroimmunology, 147(1-2), 106- 108.
[6] Clouet, D. and Rather, M. (1979) Catecholamine biosyn-thesis in brains of rats treated with morphine. Science, 168(3), 854-856.
[7] Lysle, D.T., Coussons, M.E., Watts, V.J., Bennett, E.H. and Dykstra, L.A. (1993) Morphine-induced alterations of immune status: Dose dependency, compartment speci-ficity and antagonism by naltrexone. Journalof Phar- macology and Experimental Therapeutics, 265(3), 1071- 1078.
[8] Bryant, H.U. and Roudebush, R.E. (1990) Suppressive effects of morphine pellet implants on in vivo parameters of immune function. Journalof Pharmacology and Ex- perimental Therapeutics, 255(2), 410-414.
[9] Lockwood, L.L., Silbert, L.H., Fleshner, M., Laudenslager, M.L., Watkins, L.R. and Maier, S.F. (1994) Morphine- Induced decreases in in vivo antibody responses. Brain, Behavior and Immunity, 8(1), 24-36.
[10] Haddad, R., Guimiot, F., Six, E., Jourquin, F., Setterblad, N., Kahn, E., Yagello, M., Schiffer, C., Andre-Schmutz, I., Cavazzana-Calvo, M., Gluckman, J.C., Delezoide, A.L., Pflumio, F. and Canque, B. (2006). Dynamics of thymus-colonizing cells during human development. Immunity, 24(2), 217-230.
[11] Nelson, C.J., How, T. and Lysle, D.T. (1999) Enhance-ment of the contact hypersensitivity reaction by acute morphine administration rat the elicitation phase. Clini-cal Immunology, 93(2), 176-183.
[12] Miller, J.F. (1996) Uncovering thymus functions. Per- spectives in Biology and Medicine, 39(3), 338-352.
[13] Chang, S.J., Huang, T.S., Wang, K.L., Wang, T.Y., Yang, Y.C., Chang, M.D., Wu, Y.H. and Wang, H.W. (2008) Genetic network analysis of human CD34+ hematopoietic stem/precursor cells. Taiwanese Journal of Obstetrics and Gynecology, 47(4), 422-430.
[14] Porada, C.D., Harrison-Findik, D.D., Sanada, C., Vali-ente, V., Thain, D. and Simmons, P.J. (2008) Almeida- Porada G, Zanjani ED. Development and characterization of a novel CD34 monoclonal antibody that identifies sheep hematopoietic stem/progenitor cells. Experimental Hematology, 36(12), 1739-1749.
[15] Engelhardt, M., Lübbert, M. and Guo, Y. (2002) CD34(+) or CD34(-): Which is the more primitive? Leukemia, 16(9), 1603-1608.
[16] Tegeder, I., Grosch, S., Schmidtko, A., Haussler, A., Sch- midt, H., Niederberger, E, Scholich, K. and Geisslinger, G. (2003) G protein-independent G(1) cell cycle block and apoptosis with morphine in adenocarcinoma cells: Involvement of p53 phosphorylation. Cancer Research, 63, 1846-1852.
[17] Quaglino, D. and Ronchetti, I.P. (2001) Cell death in the rat thymus: A minireview Apoptosis, 6(5), 389-401.
[18] Theodoros, K. and Burntenas, P. (1993). Immunofluo-rescence stady of astrocytes unter normal conditions and administration of heroin. Biosell, 17(2), 119-123.
[19] Tegeder, I. and Geisslinger, G. (2004) Opioids as modula-tors of cell death and survival—unraveling mechanisms and revealing new indications Pharmacological Reviews, 56(3), 351-369.
[20] Golstain, M., Freedman, L. and Backstrom, T. (1970) The inhibition of catecholamine biosynthesis by apomorphine. Journal of Pharmacy and Pharmacology, 22(9), 715- 717.
[21] Malev, H. and Pericid, D. (1987) Sex difference in the turnover of GABA in the rat substantia nigra. Journal of Neural Transmission, 70(3-4), 321-328.
[22] Haynes, B.F., Denning, S.M., Singer, K.H. and Kurtzberg, J. (1989) Ontogeny of cell precursors: A model for the initial stages of human T-cell development. Journal of Immunology Today, 10(3), 87.
[23] Spits, H.C. (1994) Early stages in human and mouse T-cell development. Current Opinion in Immunology, 6(2), 212.
[24] Toribio, M.L., Martinez, A.C., Marcos, M.A.R., Marquez, C., Cabrero, E. and de la Hera, A. (1986) A role for T3+4-6-8-transitional thymocytes in the differentiation of mature and functional T cells from human prothymocytes. Proceedings of the National Academy of Sciences, 83, 6985.
[25] Toribio, M.L., de la Hera, A., Borst, J., Marcos, M.A.R., Marquez, C., Alonso, J.M., Barccna, A. and Martinez, A. (1988) Involvement of the interleukin 2 pathway in the rearrangement and expression of both alpha/beta and gamma/delta T cell receptor genes in human T cell pre-cursors. Journal of Experimental Medicine, 168(6), 2231.
[26] Hari, T. and Spits, H. (1991) Clonal analysis of human CD4-CD8-CD3-thymocytes highly purified from postnatal thymus. Journal of Immunology, 146(7), 2116.
[27] Sanchez, M.J., Spits, H., Lanier, L.L. and Phillips, J.H. (1993) Human natural killer cell committed thymocytes and their relation to the T cell lineage. Journal of Ex-perimental Medicine, 178(6), 1857-1866.
[28] Galy, A., Barcena, A., Verma, S. and Spits, H. (1993) Precursors of CD3 + CD4 + CD8 + cells in the human thymus are defined by expression of CD34. Delineation of early events in human thymic development. Journal of Experimental Medicine, 178(2), 391-401.
[29] Poggi, A., Costa, P., Morelli, L., Cantoni, C., Pella, N., Spada, F., Biassoni, R., Nanni, L., Revello, V., Tomasello, E., Mingari, M.C., Moretta, A. and Moretta, L. (1996). Expression of human NKRP1A by CD34+ immature thymocytes: NKRP1A-mediated regulation of prolifera-tion and cytolytic activity, European Journal of Immu-nology, 26(6), 1266-1272.
[30] Stoll-Keller, F., Schmitt, C., Thumann, C., Schmitt, M.P., Caussin, C. and Kirn, A. (1997) Effects of morphine on purified human blood monocytes. Modifications of prop-erties involved in antiviral defences. International Jour-nal of Immunopharmacology, 19(2), 95-100.
[31] Elknerová, K., Lacinová, Z., Soucek, J., Marinov, I. and St?ckbauer, P. (2007) Growth inhibitory effect of the an-tibody to hematopoietic stem cell antigen CD34 in leu-kemic cell lines. Neoplasma, 54(4), 311-320.
[32] Krauter, J., Hartl, M., Hambach, L., Kohlenberg, A. Gunsilius, E., Ganser, A. and Heil, G. (2001) Receptor- mediated endocytosis of CD34 on hematopoietic cells after stimulation with the monoclonal antibody anti- HPCA-1, Journal of Hematotherapy and Stem Cell Re-search, 10(6), 863-871.
[33] Mao, J., Price, D.D. and Mayer, D.J. (1994) Thermal hyperalgesia in association with the development of morphine tolerance in rats: roles of excitatory amino acid receptors and protein kinase C. Journal of Neuroscience, 14(4), 2301-2312.
[34] Fecho, K., Maslonek, K.A., Coussons-Read, M.E., Dykstra, L.A. and Lysle, D.T. (1994) Macrophagederived nitric oxide is involved in the depressed concanavalin A re-sponsiveness of splenic lymphocytes from rats adminis-tered morphine in vivo. Journal of Immunology, 152(12), 5845-5852.
[35] Wu, W.R., Zheng, J.W., Li, N.. Bai, H,Q., Zhang, K.R.. and Li, Y. (1999) Immunosuppressive effects of dihydro- etorphine, a potent narcotic analgesic, in dihydroetorphine- dependent mice. European Journal of Pharmacology, 366(2-3), 61-69.
[36] Fecho, K. and Lysle, D.T. (2000) Heroin-induced altera-tions in leukocyte numbers and apoptosis in the rat spleen. Cellular Immunology, 202(2), 113-123.
[37] Sharp, B.M., McAllen, K., Gekker, G., Shahabi, N.A. and Peterson, P.K. (2001) Immunofluorescence detection of delta opioid receptors (DOR) on human peripheral blood CD4+ T cells and DOR-dependent suppression of HIV-1 expression. Journal of Immunology, 167(2), 1097-1102.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.