Effects of Preparation and Storage of Agar Media on the Sensitivity of Bacterial Forward Scattering Patterns


Recent worldwide foodborne outbreaks emphasize the need for the development of rapid and accurate method for pathogen detection. To address such issues, a new colony based label-free detection method working on the principles of elastic light scattering was introduced. In order to build libraries of scattering images for bacterial pathogens, it is pertinent to determine the effect of preparation and storage of the agar media on the scatter patterns. Scatter patterns of three Escherichia coli serovars (O26, O111 and O157) were studied and used in a model system, after growth on Sorbitol-MacConkey agar plates that were prepared and stored at different conditions in the laboratory. Quantitative image processing software was used to analyze variation in scatter patterns of the same serovar on media prepared under various standard laboratory conditions and to generate a cross-validation matrix for comparison. Based on the results, it was determined that attention should be given during preparation of media so that the agar plates are not air-dried more than 10 - 20 min after solidification at room temperature. The plates could be stored in sealed bags in cold room (4oC - 10oC) for up to a month before use. The findings of this study should provide guidelines in preparation, storage, and handling of media for generation of reproducible scatter patterns of bacterial colonies with the light scattering sensor for pathogen detection.

Share and Cite:

Mialon, M. , Tang, Y. , Singh, A. , Bae, E. and Bhunia, A. (2012) Effects of Preparation and Storage of Agar Media on the Sensitivity of Bacterial Forward Scattering Patterns. Open Journal of Applied Biosensor, 1, 26-35. doi: 10.4236/ojab.2012.13004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Duffy, “Detecting and Tracking Emerging Pathogenic and Spoilage Bacteria from Farm to Fork,” Springer Science Bussiness Media LLC, New York, 2009.
[2] J. Hoorfar, “Rapid Detection, Characterization, and Enumeration of Foodborne Pathogens,” APMIS Supplementum, Vol. 133, 2011, pp. 1-24.
[3] J. J. Maurer, “Rapid Detection and Limitations of Molecular Techniques,” Annual Review of Food Science and Technology, Vol. 2, 2011, pp. 259-279. doi:10.1146/annurev.food.080708.100730
[4] A. H. Havelaar, S. Brul, A. de Jong, R. de Jonge, M. H. Zwietering and B. H. ter Kuile, “Future Challenges to Microbial Food Safety,” International Journal of Food Microbiology, Vol. 139, 2010, pp. S79-S94. doi:10.1016/j.ijfoodmicro.2009.10.015
[5] I. A. Senkel, R. A. Henderson, B. Jolbitado and J. H. Meng, “Use of Hazard Analysis Critical Control Point and Alternative Treatments in the Production of Apple Cider,” Journal of Food Protection, Vol. 62, No. 7, 1999, pp. 778-785.
[6] A. K. Bhunia, “Rapid Pathogen Screening Tools for Food Safety,” Food Technology, Vol. 65, No. 2, 2011, pp. 38- 43.
[7] J. Kim, K. Oh, S. Jeon, S. Cho, D. Lee, S. Hong, S. Cho, M. Park, D. Jeon and S. Kim,”Escherichia coli O104:H4 from 2011 European Outbreak and Strain from South Korea,” Emerging Infectious Diseases, Vol. 17, No. 9, 2011, pp. 1755-1756. doi:10.3201/eid1709.110879
[8] CDC, “Salmonella Outbreaks,” 2012, in Press.
[9] A. K. Bhunia, “Biosensors and Bio-Based Methods for the Separation and Detection of Foodborne Pathogens,” Advances in Food and Nutrition Research, Vol. 54, 2008, pp. 1-44. doi:10.1016/S1043-4526(07)00001-0
[10] K. Huff, A. Aroonnual, A. E. F. Littlejohn, B. Rajwa, E. Bae, P. P. Banada, V. Patsekin, E. D. Hirleman, J. P. Robinson, G. P. Richards and A. K. Bhunia, “Light-Scattering Sensor for Real-Time Identification of Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae Colonies on Solid Agar Plate,” Microbial Biotechnology, Vol. 5, No. 5, 2012, pp. 607-620.
[11] D. Naumann, D. Helm and H. Labischinski, “Microbiological Characterizations by FT-IR Spectroscopy,” Nature, Vol. 351, No. 6321, 1991, pp. 81-82. doi:10.1038/351081a0
[12] D. Helm, H. Labischinski, G. Schallehn and D. Naumann, “Classification and Identification of Bacteria by Fourier- Transform Infrared-Spectroscopy,” Journal of General Microbiology, Vol. 137, 1991, pp. 69-79.
[13] E. Bae, N. Bai, A. Aroonnual, A. K. Bhunia and E. D. Hirleman, “Label-Free Identification of Bacterial Microcolonies via Elastic Scattering,” Biotechnology and Bioengineering, Vol. 108, No. 3, 2011, pp. 637-644. doi:10.1002/bit.22980
[14] B. Rajwa, M. M. Dundar, F. Akova, A. Bettasso, V. Patsekin, E. D. Hirleman, A. K. Bhunia and J. P. Robinson, “Discovering the Unknown: Detection of Emerging Pathogens Using a Label-Free Light-Scattering System,” Cytometry Part A, Vol. 77A, No. 12, 2010, pp. 1103-1112. doi:10.1002/cyto.a.20978
[15] P. P. Banada, K. Huff, E. Bae, B. Rajwa, A. Aroonnual, B. Bayraktar, A. Adil, J. P. Robinson, E. D. Hirleman and A. K. Bhunia, “Label-Free Detection of Multiple Bacterial Pathogens Using Light-Scattering Sensor,” Biosensors & Bioelectronics, Vol. 24, No. 6, 2009, pp. 1685-1692. doi:10.1016/j.bios.2008.08.053
[16] P. Banerjee and A. K. Bhunia, “Cell-Based Biosensor for Rapid Screening of Pathogens and Toxins,” Biosensors & Bioelectronics, Vol. 26, No. 1, 2010, pp. 99-106. doi:10.1016/j.bios.2010.05.020
[17] P. Banerjee and A. K. Bhunia, “Mammalian Cell-Based Biosensors for Pathogens and Toxins,” Trends in Biotechnology, Vol. 27, No. 3, 2009, pp. 179-188. doi:10.1016/j.tibtech.2008.11.006
[18] E. Bae, A. Aroonnual, A. K. Bhunia and E. D. Hirleman, “On the Sensitivity of forward Scattering Patterns from Bacterial Colonies to Media Composition,” Journal of Biophotonics, Vol. 4, No. 4, 2011, pp. 236-243.
[19] K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda and N. Shigesada, “Modeling Spatio-Temporal Patterns Generated by Bacillus subtilis,” Journal of Theoretical Biology, Vol. 188, No. 2, 1997, pp. 177-185. doi:10.1006/jtbi.1997.0462
[20] Y. Kozlovsky, I. Cohen, I. Golding and E. Ben-Jacob, “Lubricating Bacteria Model for Branching Growth of Bacterial Colonies,” Physical Review E, Vol. 59, No. 6, 1999, pp. 7025-7035. doi:10.1103/PhysRevE.59.7025
[21] A. L. McKay, A. C. Peters and J. W. T. Wimpenny, “Determining Specific Growth Rates in Different Regions of Salmonella typhimurium Colonies,” Letters in Applied Microbiology, Vol. 24, No. 1, 1997, pp. 74-76. doi:10.1046/j.1472-765X.1997.00354.x
[22] J. W. T. Wimpenny, “Growth and Form of Bacterial Colonies,” Journal of General Microbiology, Vol. 114, 1979, pp. 483-486. doi:10.1099/00221287-114-2-483
[23] E. W. Bae, A. Aroonnual, A. K. Bhunia, J. P. Robinson, and E. D. Hirleman, “System Automation for a Bacterial Colony Detection and Identification Instrument via Forward Scattering,” Measurement Science & Technology, Vol. 20, No. 1, 2009, Article ID: 015802. doi:10.1088/0957-0233/20/1/015802
[24] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen and H. Nielsen, “Assessing the Accuracy of Prediction Algorithms for Classification: An Overview,” Bioinformatics, Vol. 16, No. 5, 2000, pp. 412-424. doi:10.1093/bioinformatics/16.5.412
[25] M. L. Stecchini, M. Del Torre, S. Donda, E. Maltini and S. Pacor, “Influence of Agar Content on the Growth Parameters of Bacillus cereus,” International Journal of Food Microbiology, Vol. 64, No. 1-2, 2001, pp. 81-88. doi:10.1016/S0168-1605(00)00436-0
[26] M. L. Stecchini, M. Del Torre, I. Sarais, O. Saro, M. Messina and E. Maltini, “Influence of Structural Properties and Kinetic Constraints on Bacillus cereus Growth,” Applied and Environmental Microbiology, Vol. 64, No. 3, 1998, pp. 1075-1078.
[27] E. Bae, N. Bai, A. Aroonnual, J. P. Robinson, A. K. Bhunia and E. D. Hirleman, “Modeling Light Propagation through Bacterial Colonies and Its Correlation with Forward Scattering Patterns,” Journal of Biomedical Optics, Vol. 15, No. 4, 2010, Article ID: 045001. doi:10.1117/1.3463003

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.