Chemical Composition of the Cashew Apple Bagasse and Potential Use for Ethanol Production


On the world scene, the energy requirements are mainly based on fossil fuels, however, these compounds reserves are finite and their exploitation has caused serious environmental problems. As a consequence, the demand for alternative renewable sources has been intensified in substitution the rising demand for energy and raw materials. The biomass is emerging as one of the few sources that have potential to meet these challenges of sustainability, as is currently the largest energy resource in the world, and only carbon-rich material available on the planet, apart from fossils. Form, the cashew crop has great potential for technological development of alternative sources of energy, from its industrial waste processing cashew adding value to the product. In this sense, this paper aims to study the characterization of the cashew apple bagasse and to verify (by acid prehydrolysis) the potential of this material for ethanol production. Initially it was carried out physicochemical characterization of cashew bagasse used (pH, moisture content, soluble solids, sugars, cellulose, hemicellulose and lignin). Following it was carried prehydrolysis at 105℃ for 1h to obtain fermentable sugars. Analyses of the samples were carried out on HPLC the results showed the saccharification of biomass with glucose (1537.49 mg/L), xylose (3823.22 mg/L) and arabinose (7131.11 mg/L) as well as the capacity of the biomass for ethanol production.

Share and Cite:

F. Cristina dos Santos Lima, F. Luiz Honorato da Silva, J. Palmeira Gomes and J. Mariano da Silva Neto, "Chemical Composition of the Cashew Apple Bagasse and Potential Use for Ethanol Production," Advances in Chemical Engineering and Science, Vol. 2 No. 4, 2012, pp. 519-523. doi: 10.4236/aces.2012.24064.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Piccolo and F. Bezzo, “A Techno-Economic Comparison between Two Technologies for Bioethanol Production from Lignocellulose,” Biomass and Bioenergy, Vol. 33, No. 3, 2009, pp. 478-491. doi:10.1016/j.biombioe.2008.08.008
[2] M. E. Himmel, S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady and T. D. Foust, “Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production,” Science, Vol. 315, No. 5813, 2007, pp. 804-807. doi:10.1126/science.1137016
[3] International Energy Agency (IEA), “Bioenergy: Potential Contribution of Bioenergy to the World’s Future Energy Demand,” Report No. ExCo:2, IEA Bioenergy, Whakarewarewa, 2007.
[4] E. Wit and J. McClure, “Statistics for Microarrays: Design, Analysis, and Inference,” 5th Edition, John Wiley & Sons, Ltd., Chichester, 2004.
[5] L. A. B. Cortez, “Bioetanol de Cana-de-A?úcar: P&D Para Produtividade e Sustentabilidade,” Blucher, 2010.
[6] Y. I. Zheng, Z. Pan, R. Zhang and D. Wang, “Enzymatic Saccharization of Dilute Acid Pretreated Saline Crops for Fermentable Sugar Production,” Applied Energy, Vol. 86, No. 11, 2009, pp. 2459-2465. doi:10.1016/j.apenergy.2009.03.012
[7] V. M. P. Rocha, H. T. S. Rodrigues, M. M. V. Melo, L. R. B. Gon?alves and G. R. Macedo, “Cashew Apple Bagasse as a Source of Sugars for Ethanol Production by Kluyveromyces Marxianus CE025,” Journal of Industrial Microbiology & Biotechnology, Vol. 38, No. 8, 2011, pp. 1099-1107. doi:10.1007/s10295-010-0889-0
[8] V. M. P. Rocha, H. T. S. Rodrigues, G. R. Macedo and L. R. B. Gon?alves, “Enzymatic Hydrolysis and Fermentation of Pretreated Cashew Apple Bagasse with Alkali and Diluted Sulfuric Acid for Bioethanol Production,” Applied Biochemistry and Biotechnology, Vol. 155, No. 1-3, 2009, pp. 104-114. doi:10.1007/s12010-008-8432-8
[9] H. T. S. Rodrigues, V. M. P. Rocha, G. R. Macedo and L. R. B. Gon?alves, “Ethanol Production from Cashew Apple Bagasse: Improvement of Enzymatic Hydrolysis by Microwave-Assisted Alkali Pretreatment,” Applied Biochemistry and Biotechnology, Vol. 164, No. 6, 2011, pp. 929-943. doi:10.1007/s12010-011-9185-3
[10] A. M. Pacheco, D. R. Gondim and L. R. B. Gon?alves, “Ethanol Production by Fermentation Using Immobilized Cells of Saccharomyces cerevisiae in Cashew Apple Bagasse,” Applied Biochemistry and Biotechnology, Vol. 16, No. 1-8, 2010, pp. 209-217. doi:10.1007/s12010-009-8781-y
[11] Y. Sun and J. J. Cheng, “Dilute Acid Pretreatment of Rye Straw and Bermudagrass for Ethanol Production,” Bioresource Technology, Vol. 96, No. 14, 2005, pp. 1599-1606. doi:10.1016/j.biortech.2004.12.022
[12] E. Palmqvist and B. Hahn-H?gerdal, “Fermentation of Lignocellulosic Hydrolysates II: Inhibitors and Mechanisms of Inhibition,” Bioresource Technology, Vol. 74, No. 1, 2000, pp. 25-33. doi:10.1016/S0960-8524(99)00161-3
[13] BRASIL, “Métodos Físico-Químicos para Análises de Alimentos/Ministério da Saúde,” Instituto Adolfo Lutz, 2005.
[14] TAPPI—Technical Association of the Pulp and Paper Industry, “Official Test Methods (OM), Provisional Test Methods (PM) and Useful Test Methods (UM),” One Dunwoody Park, Atlanta, 2010
[15] NREL—National Renewable Energy Laboratory, “Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples,” Technical Report, Laboratory Analytical Procedure (LAP), Golden, 2008.
[16] A. M .A. Uchoa, J. M. C. Costa, G. A. Maia, E. M. C. Silva, A. F. F. U. Carvalho and T. R. Meira, “Physicochemical Parameters, Fiber Content and Gross Food Powders Obtained Food Waste Fruits,” Food and Nutrition Security, Vol. 15, 2008, pp. 58-65. (In Portuguese)
[17] M. F. O Matias, E. L. Oliveira, E. G. Guedes and M. M. A. Magalh?es, “Use of Fibres Obtained from the Cashew (Anacardium Ocidentale, L) and Guava (Psidium Guayava) Fruits for Enrichment of Food Products,” Brazilian Archives of Biology and Technology, Curitiba, Vol. 48, Special Issue, 2005, pp. 143-150. doi:10.1590/S1516-89132005000400018
[18] E Lima, F. C. S. Lima, F. L. H. Silva, J. M. S. Neto and A. S. Silva, “Reviews of Pretreatment for Delignification of the Cashew Apple Pomace for Subsequent Saccharification Process,” In: XVIII Simpósio Nacional de Bioprocessos, Universidade de Caxias do Sul, 2011, pp. 1-6. (In Portuguese)
[19] J. M. Silva Neto, F. L. H. Silva, E. E Lima and F. C. S. Lima, “Acid Hydrolysis of Bagasse Peduncle of Cashew,” In: XVIII Simpósio Nacional de Bioprocessos, Universidade de Caxias do Sul, 2011, pp. 1-6. (In Portuguese)
[20] J. R. Mielenz, J. S. Bardsley and C. E. Wyman, “Fermentation of Soybean Hulls to Ethanol While Preserving Protein Value,” Bioresource Technology, Vol. 100, No. 14, 2009, pp. 3532-3539. doi:10.1016/j.biortech.2009.02.044
[21] D. Y. Corredor, X. S. Sun, J. M. Salazar, K. L. Hohn and D. Wang, “Enzymatic Hydrolysis of Soybean Hulls Using Dilute Acid and Modified Steam-Explosion Pretreatments,” Journal of Biobased Materials and Bioenergy, Vol. 2, No. 1, 2008, pp. 1-8. doi:10.1166/jbmb.2008.201
[22] L. Canilha, W. Carvalho and J. B. A Silva, “Xylitol Bioproduction from Wheat Straw: Hemicellulose Hydrolysis and Hydrolizate Fermentation,” Journal of the Science of Food and Agriculture, Vol. 86, No. 9, 2006, pp. 1371-1376. doi:10.1002/jsfa.2524
[23] M. O. Petersen, J. Larsen and M. H. Thomsen, “Optimization of Hydrothermal Pretreatment of Wheat Straw for Production of Bioethanol at Low Water Consumption without Addition of Chemicals,” Biomass and Bioenergy, Vol. 33, No. 5, 2009, pp. 834-840. doi:10.1016/j.biombioe.2009.01.004
[24] V. P. Soudham, D. R. Odriguez, G. J. M. Rocha, M. J. Taherzadeh and C. Martin, “ Acetosolv Delignification of Marabou (Dichrostachys Cinerea) Wood with and without Acid Prehydrolysis,” Forestry Studies in China, Vol. 13, No. 1, 2011, pp. 64-70. doi:10.1007/s11632-011-0106-x

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.