Sensitive Voltammetric Determination of Mitoxantrone by Using CS-Dispersed Graphene Modified Glassy Carbon Electrodes


A novel CS-dispersed graphene modified glassy carbon electrode was fabricated. Study electrochemical characteristics of mitoxantrone in the CS-dispersed graphene modified electrode by cyclic voltammetry and other methods, by selecting and optimizing the various parameters to create a new electrochemical method for the determination of mitoxantrone. The linear range of the oxidation peak current is from 6×10–10 to 1 ×10–6 mol/l in this method, after 2.5 mins open-circuit accumulation, the limit of detection is 2×10–10 mol/l. After 10 parallel determinations, the relative standard deviation was 3.7% that the concentration of mitoxantrone was 1×10–8 mol/l. The modified electrode has been successfully applied for the assay of mitoxantrone in human urine samples.

Share and Cite:

B. Hong and Q. Cheng, "Sensitive Voltammetric Determination of Mitoxantrone by Using CS-Dispersed Graphene Modified Glassy Carbon Electrodes," Advances in Chemical Engineering and Science, Vol. 2 No. 4, 2012, pp. 453-460. doi: 10.4236/aces.2012.24055.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. S. Novoselov, A. K. Gein, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, Vol. 306, No. 5696, 2004, pp. 666-669. doi:10.1126/science.1102896
[2] A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nature Materials, Vol. 6, 2007, pp. 183-191. doi:10.1038/nmat1849
[3] C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam and A. Govindaraj, “Graphene: The New Two-Dimensional Nanomaterial,” Angewandte Chemie International Edition, Vol. 48, No. 42, 2009, pp. 7752-7777. doi:10.1002/anie.200952249
[4] M. Pumera, “Electrochemistry of Graphene: New Horizons for Sensing and Energy Storage,” The Chemical Record, Vol. 9, No. 4, 2009, pp. 211-223. doi:10.1002/tcr.200900008
[5] W. Yang, K. R. Ratinac, S. P. Ringer, P. Thordarson, J. J. Gooding and F. Braet, “Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene?” Angewandte Chemie International Edition, Vol. 49, No. 12, 2010, pp. 2114-2138. doi:10.1002/anie.200903463
[6] D. Li, M. B. Muller, S. Gilje, R. B. Kaner and G. G. Wallace, “Processable Aqueous Dispersions of Grapheme Nanosheets,” Nature Nanotechnology, Vol. 3, 2008, pp. 101-105. doi:10.1038/nnano.2007.451
[7] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen and R. S. Ruoff, “Graphene-Based Composite Materials,” Nature, Vol. 442, 2006, pp. 282-286. doi:10.1038/nature04969
[8] Y. X. Xu, H. Bai, G. W. Lu, C. Li and G. Q. Shi, “Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets,” Journal of the American Chemical Society, Vol. 130, No. 18, 2008, pp. 5856-5857. doi:10.1021/ja800745y
[9] R. Muszynski, B. Seger and P. V. J. Kamat, “Decorating Graphene Sheets with Gold Nanoparticles,” The Journal of Physical Chemistry C, Vol. 112, No. 14, 2008, pp. 5263-5266. doi:10.1021/jp800977b
[10] C. M. Chen, Q.-H. Yang, Y. G. Yang, W. Lv, Y. F. Wen, P.-X. Hou, M. Z. Wang and H.-M. Cheng, “Self-Assembled Free-Standing Graphite Oxide Membrane,” Advanced Materials, Vol. 21, No. 29, 2009, pp. 3007-3011. doi:10.1002/adma.200803726
[11] H. Q. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace and D. Li, “Mechanically Strong, Electrically Conductive, and Biocompatible Graphene Paper,” Advanced Materials, Vol. 20, No. 18, 2008, pp. 3557-3561. doi:10.1002/adma.200800757
[12] J. W. Wang, S. L. Yang, D. Y. Guo, P. Yu, D. Li, J. S. Ye and L. Q. Mao, “Comparative Studies on Electrochemical Activity of Graphene Nanosheets and Carbon Nanotubes,” Electrochemistry Communications, Vol. 11, No. 10, 2009 pp. 1892-1895. doi:10.1016/j.elecom.2009.08.019
[13] W. J. Lin, C. S. Liao, J. H. Jhang and Y. C. Tsai, “Graphene Modified Basal and Edge Plane Pyrolytic Graphite Electrodes for Electrocatalytic Oxidation of Hydrogen Peroxide and Beta-Nicotinamide Adenine Dinucleotide,” Electrochemistry Communications, Vol. 11, No. 11, 2009, pp. 2153-2156. doi:10.1016/j.elecom.2009.09.018
[14] Y. Wang, Y. Wan and D. Zhang, “Reduced Grapheme Sheets Modified Glassy Carbon Electrode for Electrocatalytic Oxidation of Hydrazine in Alkaline Media,” Electrochemistry Communications, Vol. 12, No. 2, 2010, pp. 187-190. doi:10.1016/j.elecom.2009.11.019
[15] X. P. Chen, H. Z. Ye and W. Z. Wang, “Electrochemiluminescence Biosensor for Glucose Based on Graphene/ Nafion/GOD Film Modified Glassy Carbon Electrode,” Electroanalysis, Vol. 20, No. 20, 2010, pp. 2347-2352. doi:10.1002/elan.201000095
[16] P. Wu, S. A. Qian and Y. J. Hua, “Direct Electrochemistry of Glucose Oxidase Assembled on Graphene and Application to Glucose Detection,” Electrochimica Acta, Vol. 55, No. 28, 2010, pp. 8606-8614. doi:10.1016/j.electacta.2010.07.079
[17] Y. Wang, Y. M. Li and L. H. Tang, “Application of Graphene-Modified Electrode for Selective Detection of Dopamine,” Electrochemistry Communications, Vol. 11, No. 4, 2009, pp. 889-892. doi:10.1016/j.elecom.2009.02.013
[18] L. Tan, K.-G. Zhou, Y. H. Zhang, et al., “Nanomolar Detection of Dopamine in the Presence of Ascorbic Acid at Beta-Cyclodextrin/Graphene Nanocomposite Platform,” Electrochemistry Communications, Vol. 12, No. 4, 2010, pp. 557-560. doi:10.1016/j.elecom.2010.01.042
[19] J. Li, S. J. Guo and Y. M. Zhai, “Nafion-Graphene Nanocomposite Film as Enhanced Sensing Platform for Ultrasensitive Determination of Cadmium,” Electrochemistry Communications, Vol. 11, No. 5, 2009, pp. 1085-1088. doi:10.1016/j.elecom.2009.03.025
[20] J.-F. Wu, M.-Q. Xu and G.-C. Zhao, “Graphene-Based Modified Electrode for the Direct Electron Transfer of Cytochrome c and Biosensing,” Electrochemistry Communications, Vol. 12, No. 1, 2010, pp. 175-177. doi:10.1016/j.elecom.2009.11.020
[21] J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei and P. E. Sheehan, “Reduced Graphene Oxide Molecular Sensors,” Nano Letters, Vol. 8, No. 10, 2008, pp. 3137-3140. doi:10.1021/nl8013007
[22] M. Zhou, Y. M. Zhai and S. J. Dong, “Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide,” Analytical Chemistry, Vol. 81, No. 14, 2009, pp. 5603-5613. doi:10.1021/ac900136z
[23] K. M. Rentsch, R. A. Schwendener and E. H?nseler, “Determination of Mitoxant rone in Mouse Whole Blood and Different Tissues by High-Performance Liquid Chromatography,” Journal of Chromatography B: Biomedical Sciences and Applications, Vol. 679, No. 1-2, 1996, pp. 185-192. doi:10.1016/0378-4347(96)00023-0
[24] P. Guo, L. M. Ye, W. Z. Wu and T. S. Wu, “Determination of Antitumour Drug Mitoxantrone in Plasma Using HPLC Column Switching Technique,” Acta Pharmaceutica Sinica, Vol. 26, No. 5, 1991, pp. 367-369.
[25] Q. Z. Zhou, C. Y. Wu, L. K. Zhang, N. Li and X. Y. He, “Determination of Mitoxantrone by Spectrophotometry,” Chinese Journal of Pharmaceutical Analysis, Vol. 17, No. 6, 1997, pp. 403-405.
[26] H. Z. Song, M. F. Yang and Z. Y. Gu, “Adsorptive Behaviour of Mitoxantrone and Its Adsorptive Voltammeteic Determination,” Chinese Journal of Analytical Chemistry, Vol. 21, 1993, pp. 1285-1287.
[27] M. D. Guo, “Study on Mitoxantrone Using Mercury Film Carbon Fiber Microelectrode by 1.5 Order Differential Stripping Voltammetry,” Chinese Analytical Sciences Acta, Vol. 11, 1995, pp. 46-48.
[28] J. B. Hu and Q. L. Li, “Studies on the Voltammetric Behavior of Mitoxantrone and Its Application at the Ni/GC Modified Electrode,” Chemical Journal of Chinese Universities, Vol. 22, No. 3, 2001, pp. 380-384.
[29] M. O. Brett, T. R. A.Macedo, D. Raimundo, M. H. Marques and S. H. P. Serrano, “Electrochemical Oxidation of Mitoxantrone at a Glassy Carbon Electrode,” Analytica Chimica Acta, Vol. 385, No. 1-3, 1999, pp. 401-408. doi:10.1016/S0003-2670(98)00807-1

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.