[1]
|
Estabel, J. Konig, N., Shiokawa, K., Exbrayat, J.M. (2005) Apoptosis in Xenopus genus. In: Scovassi, I. Ed., Apoptosis. Research Signpost, Trivandrum, 147-156.
|
[2]
|
Nieuwkoop and Faber (1967) Normal table of Xenopus laevis (Daudin), North Holland, Amsterdam.
|
[3]
|
Schreiber, A.M., Cai, L., Brown, D.D. (2004) Remodeling of the intestine during metamorphosis of Xenopus laevis. Proceedings of National Academy of Sciences U.S.A., 8, 3720-3725.
|
[4]
|
Nakajima, K., Fujimoto, K., Yaoita, Y. (2005) Programmed cell death during amphibian metamorphosis. Seminar in Cell and Developmental Biology, 16, 271-280.
|
[5]
|
Glucksman, A. (1951) Cell deaths in normal vertebrate ontogeny. Biological Review, 26, 59-86.
|
[6]
|
Imoh, H. (1986) Cell death during normal gastrulation in the newt, Cynops pyrrhogaster. Cell Differentiation, 19, 35-42.
|
[7]
|
Sanders, E.K., Torkkeli, P.H., French, A.S. (1997) Patterns of cell death during gastrulation in chick and mouse embryos. Anatomy Embryology, 195, 147-154.
|
[8]
|
Hensey, C., Gautier, J. (1998) Programmed cell death during Xenopus development: a spatio-temporal analysis. Developmental Biology, 203, 36-48.
|
[9]
|
Cole, L.K., Ross, L.S. (2001) Apoptosis in the developing zebrafish embryo. Developmental Biology, 240, 123-142.
|
[10]
|
Kerr, J.F.R., Harmon, B., Searle, J. (1972) Apoptosis: basic biological phenomenon with wide-range implications in tissue kinetics. British Journal of Cancer, 26, 239-257.
|
[11]
|
Hensey, C., Gautier, J. (1997) A developmental timer that regulates apoptosis at the onset of gastrulation. Mechanism of Development, 69, 183-195.
|
[12]
|
Hensey, C., Gautier, J. (1999) Developmental regulation of induced and programmed cell death in Xenopus embryos. Annals of New York Academy of Sciences, 887, 105-119.
|
[13]
|
Greenwood, J., Gautier, J. (2005) From oogenesis through gastrulation: developmental regulation of apoptosis. Seminars in Cell and Developmental Biology, 16, 215-224.
|
[14]
|
Stack, J.H., Newport, J.W. (1997) Developmentally regulated activation of apoptosis early in Xenopus gastrulation results in cyclin A degradation during interphase of the cell cycle. Development, 124, 3185-3195.
|
[15]
|
Sible, J.C., Anderson, .JA., Lewellyn, A.L., Maller, J.L. (1997) Zygotic transcription is required to block a maternal program of apoptosis in Xenopus embryos. Developmental Biology, 189, 335-346.
|
[16]
|
Maller, J.L., Gross, S.D., Schwab, M.S., Finkielstein, C.V., Taieb, F.E., Qian Y.W. (2001) Cell cycle transitions in early Xenopus development. Novartis Foundation Symposia, 237, 58-73.
|
[17]
|
Shiokawa, K., Kai, M., Higo, T., Kaito, C., Yokoska, J., Yasuhiko, Y., Kajita, E., Nagano, M., Yamada, Y., Shibata, M., Muto, T., Shinga, J., Hara, H., Takayama, E., Fukamachi, H., Yaoita, Y., Igarashi, K. (2000) Maternal program of apoptosis activated shortly after midblastula transition by overexpression of S-adenosylmethionine decarboxylase in Xenopus early embryos. Comparative Biochemistry Physiology, B Biochemistry and Molecular Biology, 126, 149-155.
|
[18]
|
Kaito, C., Kai, M., Higo, T., Takayama, E., Fukamachi, H., Sekimizu, K., Shiokawa, K. (2001) Activation of the maternally preset program of apoptosis by microinjection of 5-aza-2'-deoxycytidine and 5-methyl-2'-deoxycytidine-5'-triphosphate in Xenopus laevis embryos. Development, Growth, Differentiation, 43, 383-390.
|
[19]
|
Takayama, E., Higo, T., Kai, M., Fukasawa, M., Nakajima, K., Hara, H., Tadakuma, T., Igarashi K., Yaoita, Y., Shiokawa, K. (2004) Involvement of caspase-9 in execution of the maternal program of apoptosis in Xenopus late blastulae overexpressed with S-adenosylmethionine decarboxylase. Biochemical and Biophysical Research Communications, 24, 325, 1367-1375.
|
[20]
|
Carter, A.D., Sible, J.C. (2003) Loss of XChk1 function triggers apoptosis after the midblastula transition in Xenopus laevis embryos. Mechanism of Development, 120, 315-323.
|
[21]
|
Kai, M., Kaito, C., Fukamachi, H., Higo, T., Takayama, E., Hara, H., Ohya, Y., Igarashi, K., Shiokawa, K. (2003) Overexpression of S-adenosylmethionine decarboxylase (SAMDC) in Xenopus embryos activates maternal program of apoptosis as a “fail-safe” mechanism of early embryogenesis. Cell Research, 13, 147-158.
|
[22]
|
Wroble, B.N., Sible, J.C. (2005) Chk2/Cds1 protein kinase blocks apoptosis during early development of Xenopus laevis. Developmental Dynamics, 233, 1359-1365.
|
[23]
|
Ruzov, A., Shorning, B., Mortusewicz, O., Dunican, D.S., Leonhard T, H., Meehan, R.R. (2009) MBD4 and MLH1 are required for apoptotic induction in xDNMT1-depleted embryos. Development, 136, 2277-2286.
|
[24]
|
De Marco, N., Campanella, C., Carotenuto, R. (2011) In X. laevis embryos high levels of the anti-apoptotic factor p27BBP/eIF6 are stage-dependently found in BrdU and TUNEL-reactive territories. Zygote, 19, 157-163.
|
[25]
|
Schuff, M., Siegel, D., Bardine, N., Oswald, F., Donow, C., Knichel, W. (2009) FoxO genes are dispensable during gastrulation but required for late embryogenesis in Xenopus laevis. Developmental Biology, 15, 259-273.
|
[26]
|
Trindade, M., Messenger, N., Papin, C., Grimmer, D., Fairclough, L., Tada, M., Smith, J.C. (2003) Regulation of apoptosis in the Xenopus embryo by Bix3. Development, 130, 4611-4622.
|
[27]
|
Ikegami, R., Hunter, P., Yager, T.D. (1999) Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Developmental Biology, 15, 409-433.
|
[28]
|
Endo, T., Kusakabe, M., Sunadome, K., Yamamoto, T., Nishida, E. (2011) The kinase SGK1 in the endoderm and mesoderm promotes ectodermal survival by down-regulating components of the death-inducing signaling complex. Science of Signalisation, 18, 156.
|
[29]
|
Wallingford, J.B., Seufert, D.W., Virta, V.C., Vize, P.D. (1997) p53 activity is essential for normal development in Xenopus. Current Biology, 7, 747-757.
|
[30]
|
Malikova, M.A., Van Stry, M., Symes, K. (2007) Apoptosis regulates notochord development in Xenopus. Developmental Biology, 311, 434-448.
|
[31]
|
Andreazzoli, M., Gestri, G., Angeloni, D., Menna, E., Barsacchi, G. (1999) Role of Xrx1 in Xenopus eye and anterior brain development. Development, 126, 2451-2460.
|
[32]
|
Yeo, W., Gautier, J. (2003) A role for programmed cell death during early neurogenesis in Xenopus. Developmental Biology, 260, 31-45.
|
[33]
|
Kim, G.H., Park, E., Han, J.K. (2005) The assembly of POSH-JNK regulates Xenopus anterior neural development. Developmental Biology, 286, 256-269.
|
[34]
|
Sugimoto, K., Okabayashi, K., Sedohara, A., Hayata, T., Asashima, M. (2007) The role of XBtg2 in Xenopus neural development. Developmental Neurosciences, 29, 468-479.
|
[35]
|
Tribulo, C., Aybar, M., Sanchez, S.S., Mayor, R. (2004) A balance between the anti-apoptotic activity of Slug and the apoptotic activity of msx1 is required for the proper development of the neural crest. Developmental Biology, 275, 325-342.
|
[36]
|
Carl, T.F., Dufton, C., Hanken, J., Klymkowsky, M.W. (1999) Inhibition of neural crest migration in Xenopus using antisense slug RNA. Developmental Biology, 213, 101-115.
|
[37]
|
Aybar, M.J., Nieto, A., Mayor, R. (2003) Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development, 30, 483-494.
|
[38]
|
La Bonne, C., Bronner-Fraser, M. (2000) Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Developmental Biology, 221, 195-205.
|
[39]
|
Mayor, R., Guerrero, N., Young, R.M., Gomez-Skarmeta, J.L., Cuellar, C. (2000) A novel function for the Xslug gene: control of dorsal mesendoderm development by repressing BMP-4. Mechanism of Development, 97, 47-56.
|
[40]
|
Schneider, M., Schambony, A., Wedlich, D. (2010) Prohibitin1 acts as a neural crest specifier in Xenopus development by repressing the transcription factor E2F1. Development, 137, 4073-4081.
|
[41]
|
De Marco, N., Iannone, L., Carotenuto, R., Biffo, S., Vitale, A., Campanella, C. (2010) p27(BBP)/eIF6 acts as an anti-apoptotic factor upstream of Bcl-2 during Xenopus laevis development. Cell Death Differentiation, 17, 360-372.
|
[42]
|
Hutson, L.D., Bothwell, M. (2001) Expression and function of Xenopus laevis p75(NTR) suggest evolution of developmental regulatory mechanisms. Journal of Neurobiology, 49, 79-98.
|
[43]
|
Estabel, J. (2004).Apoptoses physiologiques et apoptoses expérimentalement induites au cours du développement de Xenopus laevis, Ph.D. Thesis, EPHE, Lyon.
|
[44]
|
Poitras, L., Bisson, N., Islam, N., Moss, T. (2003) A tissue restricted role for the Xenopus Jun N-terminal kinase MLK2 in cement gland and pronephric tubule differentiation. Developmental Biology, 254, 200-214.
|
[45]
|
Weber, R. (1964); Ultrastructural changes in regressing tail muscles of Xenopus laevis at metamorphosis Journal of Cell Biology, 22, 481-487.
|
[46]
|
Kerr, J.F.R., Harmon, B., Searle, J. (1974) An electron-microscope study of cell deletion in the Anuran tadpole tail during spontaneous metamorphosis with special reference to apoptosis of striated tail muscle fibres. Journal of Cell Science, 14, 571-585.
|
[47]
|
Tata, J.R. (1996) Metamorphosis: an exquisite model for hormonal regulation of post-embryonic development. Biochemical Society Symposia, 62, 123-136.
|
[48]
|
Shi, Y.B., Ihizuya-Oka, A. (2001) Thyroid-hormone regulation of apoptotic tissue remodeling implications from molecular analysis of amphibian metamorphosis. Progress in Nucleic Acid Research and Molecular Biology, 65, 53-100.
|
[49]
|
Bertrand, S. Laudet, V. (2001) La métamorphose des amphibiens: un modèle prometteur pour étudier les protéases de la matrice. Médecine/Sciences, 17, 1195-1200.
|
[50]
|
Dodd, M.H.I., Dodd, J.M. (1976) Physiology of the Amphibia. In: Loft, B. Ed., Academic Press, New York.
|
[51]
|
Su, Y., Damjanowski, S, Shi, Y., Shi, Y.B. (1999) Molecular and cellular basis of tissue remodeling during amphibian metamorphosis. Histology Histopathology, 14, 175-183.
|
[52]
|
Ishizuya-Oka, A., Hasebe, T., Shi, Y.B. (2010). Apoptosis in amphibian organs during metamorphosis. Apoptosis, 15, 350-364.
|
[53]
|
Tata, J.R. (2006) Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Molecular and Cellular Endocrinology, 26, 246, 10-20.
|
[54]
|
Kanamori, A., Brown, D.D. (1996) The analysis of complex developmental programmes: amphibian metamorphosis. Genes Cells. 1, 429-435.
|
[55]
|
Du Pasquier, D., Rinheval, V., Sinzelle, L., Chesneau, A., Ballagny, C., Sachs, L.M., Demeneix, B., Mazabraud, A.(2006). Developmental cell death during Xenopus metamorphosis involves BID cleavage and caspase2 and 8 activation. Developmental Dynamics, 235, 2083-2094.
|
[56]
|
Estabel, J., Mercer, A., Koenig, N., Exbrayat, J.-M. (2003) Programmed cell death in Xenopus laenis metamorphosis development prior to, and during, metamorphosis. Life Science, 73, 3298-3306.
|
[57]
|
Marsh-Armstrong, N., Cai, L., Brown, D.D. (2004) Thyroid hormone controls the development of connections between the spinal cord and limbs during Xenopus laevis metamorphosis. Proceedings of National Academy of Sciences U S A., 101, 165-170.
|
[58]
|
Hughes, A.F. (1961) Cell degeneration in the larval ventral horn of Xenopus laevis. Journal of Embryology and Experimental Morphology, 9, 269-284.
|
[59]
|
Prestige, M.C. (1965) Cell turnover in the spinal ganglia of Xenopus laevis tadpoles. Journal of Embryology and Experimental Morphology, 13, 63-72.
|
[60]
|
Hourdry, J., Beaumont, A. (1985) Les métamorphoses des amphibiens. Masson, Paris.
|
[61]
|
Jenkins, S., Straznicky, C. (1986) Naturally occurring and induced ganglion cell death. A retinal whole-mount autoradiographic study in Xenopus. Anatomical Embryology, 174, 59-66.
|
[62]
|
Gaze, R.M., Grant, P. (1992) Spatio-temporal patterns of retinal ganglion cell death during Xenopus development. Journal of Comparative Neurology, 315, 264-274.
|
[63]
|
Udin, S.B., Grant, S. (1999). Plasticity in the tectum of Xenopus laevis: binocular maps. Program in Neurobiology, 59, 81-106.
|
[64]
|
Oppenheim, R.W. (1991) Cell death during development of the nervous system. Annual Review of Neurosciences, 14, 453-501.
|
[65]
|
Robert, A., Clarke, J.D.W. (1982) The neuronatomy of an Amphibian embryo spinal cord. Philosophical Transactions of Royal Society of London, B, 296, 195-212.
|
[66]
|
Lamborghini, J.E. (1987) Disappearance of Rohon-Beard neurons from the spinal cord of Xenopus laevis. Journal of Comparative Neurology, 264, 47-55.
|
[67]
|
Coen, L., Du Pasquier, D., Le Mevel, S., Brown, S., Tata, J., Mazabraud, A., Demeneix, B.A. (2001) Xenopus Bcl-X(L) selectively protects Rohon-Beard neurons from metamorphic degeneration. Proceedings of National Academy of Sciences USA, 98, 7869-7874.
|
[68]
|
Cruz-Reyes, J., Tata, J.R. (1995) Cloning, characterization and expression of two Bcl-2 like cell survival genes. Gene, 158, 171-179.
|
[69]
|
Nakajima, K., Yaoita, Y. (2003) Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis. Development Dynamics, 227, 246-255.
|
[70]
|
Nishikawa, A., Hayashi, H. (1995) Spatial, temporal and hormonal regulation of programmed muscles cell death during metamorphosis of the frog Xenopus laevis. Differentiation, 59, 207-214.
|
[71]
|
Sachs, L.M., Abdallah, B., Hassan, A. Levi, G., Read, J.C., Demeneix, B.A. (1997) Apoptosis in Xenopus tadpole tail muscles involves Bax-dependent pathways. FASEB Journal, 11, 801-808
|
[72]
|
Das, B., Schreider, A.M., Huag, H., Brown, D.D.(2002) Multiple thyroid hormone-induced muscle growth and death programs during metamorphosis in Xenopus laevis. Proceedings of National Academy of Sciences USA, 99, 12230-12235.
|
[73]
|
Rowe, I., Le Blay, K., Du Pasquier, D., Palmier, K., Levi, G., Demeneix, B., Coen, L. (2005) Apoptosis of tail muscle during amphibian metamorphosis involves a caspase 9-dependent mechanism. Developmental Dynamics, 233, 76-87.
|
[74]
|
Shi, Y.B., Ishizuya-Oka, A. (1996) Biphasic intestinal development in amphibians: embryogenesis and remodeling during metamorphosis. Current Topics in Developmental Biology, 32, 205-235.
|
[75]
|
Ishizuya-Oka, A., Ueda, S. (1996) Apoptosis and cell proliferation in the Xenopus small intestine during metamorphosis. Cell and Tissue Research, 286, 467-476.
|
[76]
|
Atkinson, B.G., Helbing, C., Chen, Y.Q. (1994) Perspectives in comparative endocrinology. In: Davy, D.G., Tobe, S.S., Peter, R.G. Eds. National Research Council of Canada, Ottawa, 416.
|
[77]
|
Shi, Y.B., Ishizuya-Oka, A. (1997) Autoactivation of Xenopus Thyroid Hormone Receptor beta Genes Correlates with Larval Epithelial Apoptosis and Adult Cell Proliferation. Journal of Biomedical Science, 4, 9-18.
|
[78]
|
Shi, Y.B., Ishizuya-Oka, A. (2001) Thyroid hormone regulation of apoptotic tissue remodeling: implications from molecular analysis of amphibian metamorphosis. Progress in Nucleic Acid Research and Molecular Biology, 65, 53-100.
|
[79]
|
Ishizuya-Oka, A., Ueda, S., Inokuchi, T., Amano, T., Damjanovski, S., Stolow, M., Shi, YB. (2001) Thyroid hormone-induced expression of sonic hedgehog correlates with adult epithelial development during remodeling of the Xenopus stomach and intestine. Differentiation, 69, 27-37.
|
[80]
|
Kaltenbach, J.C., Fry, A.E., Colpitts, K.M., Faszewski, .EE. (2012) Apoptosis in the digestive tract of herbivorous Rana pipiens larvae and carnivorous Ceratophrys ornata larvae: an immunohistochemical study. Journal of Morphology, 273, 103-108.
|
[81]
|
Hasebe, T., Kajita, M., Fujimoto, K., Yaoita, Y., Ishizuya-Oka, A.(2007) Expression profiles of the duplicated matrix metalloproteinase-9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells during Xenopus laevis metamorphosis. Developmental Dynamics, 236, 2338-2345.
|
[82]
|
Ishizuya-Oka, A., Shi, Y.B. (2005) Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: a model for studying organ regeneration. Development Growth Differentiation, 47, 601-607.
|
[83]
|
Schreiber, A.M., Brown, D.D. (2003) Tadpole skin dies autonomously in response to thyroid hormone at metamorphosis. Proceedings of National Academy of Sciences U S A., 100, 1769-1774.
|
[84]
|
Tamori, Y., Wakahara, M. (2000) Conversion of red blood cells (RBCs) from the larval to the adult type during metamorphosis in Xenopus: specific removal of mature larval-type RBCs by apoptosis. International Journal of Developmental Biology, 44, 373-380.
|
[85]
|
Yaoita, Y., Shi, Y.B., Brown, D.D. (1990) Xenopus laevis alpha and beta thyroid hormone receptors. Proceedings of the National Academy of Sciences of the USA, 87, 7090–7094.
|
[86]
|
Shi, Y.B., Ishizuya-Oka, A. (1996) Biphasic intestinal development in amphibians: embryogenesis and remodeling during metamorphosis. Current Topics in Developmental Biology, 32, 205-235.
|
[87]
|
Shi, Y.B., Li, Q., Damjanovski, S., Aano, T., Ishizuya-Oka, A. (1998) Regulation of apoptosis during development: input from the extracellular matrix (review). International Journal of Molecular Medicine, 2, 273-282.
|
[88]
|
Shi, Y.B., Sachs, L.M., Jones, P., Li, Q., Ishizuya-Oka, A. (1998) Thyroid hormone regulation of Xenopus laevis metamorphosis: functions of thyroid hormone receptors and roles of extracellular matrix remodeling. Wound Repair Regeneration, 6, 314-322.
|
[89]
|
Berry, D.L., Schwartzman, R.A., Brown, D.D. (1998) The expression pattern of thyroid hormone response genes in the tadpole tail identifies multiple resorption programs. Developmental Biology, 203, 12-23.
|
[90]
|
Ishizuya-Oka, A., Shi, Y.B. (2005) Molecular mechanisms for thyroid hormone-induced remodeling in the amphibian digestive tract: a model for studying organ regeneration. Development Growth Differentiation, 47, 601-607.
|
[91]
|
Ishizuya-Oka, A., Shi, Y.B. (2008) Thyroid hormone regulation of stem cell development during intestinal remodeling. Molecular Cellular Endocrinology, 288, 71-78.
|
[92]
|
Hasebe, T., Hartman, R., Matsuda, H. Shi, Y.B. (2006) Spatial and temporal expression profiles suggest the in-volvement of gelatinase A and membrane type 1 matrix metalloproteinase in amphibian metamorphosis. Cell and Tissue Research, 324, 105-116.
|
[93]
|
Hasebe, T., Kajita, M., Iwabuchi, M., Ohsumi, K., Ishizuya-Oka, A. (2011) Thyroid hormone-regulated expression of nuclear lamins correlates with dedifferentiation of intestinal epithelial cells during Xenopus laevis metamorphosis. Developmental Genes and Evolution, 221, 199-208.
|
[94]
|
Hasebe T, Kajita M, Shi YB, Ishizuya-Oka A (2008) Thyroid hormone-up-regulated hedgehog interacting protein is involved in larval-to-adult intestinal remodeling by regulating sonic hedgehog signaling pathway in Xenopus laevis. Developmental Dynamics, 237, 3006-3015.
|
[95]
|
Wang, G.J., Schmued, L.C., Andrews, A.M., Scallet, A.C., Slikker, W., Binienda, Z. (2000) Systemic administration of domic acid-induced spinal cord lesions in neonatal rats. Journal of Spinal Cord Medicine, 23, 31-39.
|
[96]
|
Estabel, J., Exbrayat, J.M. (2002) Localisation des récepteurs AMPA/kainate dans les organes périphériques chez Xenopus laevis par immunohistochimie. Revue Francaise d’Histotechnologie, 15, 9-14.
|
[97]
|
Mouterfi, N., Moudilou, E., Estabel, J., Konig, N., Benyamin, Y., Exbrayat, J.M. (2006) Effets d’un traitement pharmacologique par un antagoniste des récepteurs ionotropes du glutamate sur l’apoptose et l’expression des calpaines chez des têtards. Revue Francaise d’Histotechnologie, 19, 113-117.
|
[98]
|
Mouterfi, N., Moudilou, E.N., Exbrayat J.M., Brun, C. (2007) Glutamate induced calpains-like expression in Xenopus laevis development. 14th European Congress of Herpetology., September 2007, Porto (Portugal), Abstracts, 25.
|
[99]
|
Moudilou, E.N., Mouterfi, N., Exbrayat, J.M., Brun, C. (2010) Calpains expression during Xenopus laevis development. Tissue and Cell, 42, 275–281.
|
[100]
|
Rowe, I., Coen, L., Le Blay, K., Le Mevel, S., Demeneix, B.A. (2002) Autonomous regulation of muscle fibre fate during metamorphosis in Xenopus tropicalis. Developmental Dynamics, 224, 381-390.
|
[101]
|
Del Pino, E.M., Medina, A. (1998) Neural development in the marsupial frog Gastrotheca riobambae. International Journal of Developmental Biology, 42, 723-731.
|
[102]
|
Haydar, T.H., Kuan, C.I., Flavell, R.A., Rakic, P. (1999) The role of cell death in regulating the size and shape of the mammalian forebrain. Cerebral Cortex, 9, 621-626.
|