THz-Wave Generation from GaP THz Photonic Crystal Waveguides under Difference-Frequency Mixing


GaP terahertz (THz) two-dimensional (2D) photonic crystal (PC) waveguides with line defects were fabricated using inductively-coupled plasma reactive-ion etching (ICP-RIE) in Ar/Cl2 gas chemistries. THz-wave generation from the fabricated PC waveguides was demonstrated under collinear phase-matched difference-frequency generation (DFG), using Cr:Forsterite (Cr:F) lasers as the incident source. We compared the THz-wave output characteristics of the PC waveguides with that of GaP planar waveguides. The collinear phase-matching conditions in the DFG process were satisfied for 300- and 500-μm-wide PC waveguide structures at 0.7 and 0.6 THz, respectively. The additional output peaks that appeared near the edge of the photonic band gap, around 0.5 THz, were attributed to the guiding modes in the PC waveguide; no such peaks appeared in the non-patterned ridge waveguides. These experimental results suggest that the phonon-polariton confinement in THz-PC waveguides based on the GaP crystal could be used to enhance the nonlinear optical effect for THz-wave generation.

Share and Cite:

K. Saito, T. Tanabe and Y. Oyama, "THz-Wave Generation from GaP THz Photonic Crystal Waveguides under Difference-Frequency Mixing," Optics and Photonics Journal, Vol. 2 No. 3A, 2012, pp. 201-205. doi: 10.4236/opj.2012.223030.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Nishizawa, “Open-Up a New Field in Tera-Hertz Band,” Journal of Acoustical Society of Japan, Vol. 57, No. 2, 2001, pp. 163-169.
[2] M. Tonouchi, “Cutting-Edge Terahertz Technology,” Nature Photonics, Vol. 1, No. 2, 2007, pp. 97-105. doi:10.1038/nphoton.2007.3
[3] D. A. Auston, K. P. Cheung and P. R. Smith, “Picosecond Photoconducting Hertzian Dipoles,” Applied Physics Letters, Vol. 45, No.3, 1984, pp. 284-286. doi:10.1063/1.95174
[4] P. U. Jepsen, R. H. Jacobsen and S. R. Keiding, “Generation and Detection of Terahertz Pulses from Biased Semiconductor Antennas,” Journal of the Optical Society of America B, Vol. 13, No.11, 1996, pp. 2424-2436. doi:10.1364/JOSAB.13.002424
[5] M. Tani, S. Matsuura, K. Sakai and S. Nakashima, “Emission Characteristics of Photoconductive Antennas Based on Low-Temperature-Grown GaAs and Semi-Insulating GaAs,” Applied Optics, Vol.36, No. 30, 1997, pp. 7853-7859. doi:10.1364/AO.36.007853
[6] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson and A. Y. Cho, “Quantum Cascade Laser,” Science, Vol. 264, No. 5158, 1994 , pp. 553-556. doi: 10.1126/science.264.5158.553
[7] T. Tanabe, K. Suto, J. Nishizawa, T. Kimura and K. Saito, “Frequency-Tunable High-Power Terahertz Wave Generation from GaP,” Journal of Applied Physics, Vol. 93, No. 8, 2003, pp. 4610-4615. doi:10.1063/1.1560573
[8] T. Tanabe, K. Suto, J. Nishizawa, K. Saito and T. Kimura, “Tunable Terahertz Wave Generation in the 3to 7-THz region from GaP,” Applied Physics Letters, Vol. 83, No. 2, 2003, pp. 237-239. doi:10.1063/1.1592889
[9] T. Tanabe, K. Suto, J. Nishizawa, K. Saito and T. Kimura, “Frequency-Tunable Terahertz Wave Generation via Excitation of Phonon-Polaritons in GaP,” Journal of Physics D: Applied Physics, Vol. 36, No. 8, 2003, pp. 953-957. doi:10.1088/0022-3727/36/8/302
[10] F. De Martini, “Infrared Generation by Coherent Excitation of Polaritons,” Physical Review B, Vol. 4, No. 12, 1971, pp. 4556-4578. doi:10.1103/PhysRevB.4.4556
[11] K. Kawase, M. Mizuno, S. Sohoma, H. Takahashi, T. Taniuchi, Y. Urata, S. Wada, H. Tashiro and H. Ito, “Difference-Frequency Terahertz-Wave Generation from 4-Dimethylamino-N-Methyl-4-Stilbazolium-Tosylate by Use of an Electronically Tuned Ti: Sapphire Laser,” Optics Letters, Vol. 24, No. 15, 1999, pp. 1065-1067. doi:10.1364/OL.24.001065
[12] T. Taniuchi and H. Nakanishi, “Collinear Phase-Matched Terahertz-Wave Generation in GaP Crystal Using a DualWavelength Optical Parametric Oscillator,” Journal of Applied Physics, Vol. 95, No. 12, 2004, pp. 7588-7591. doi:10.1063/1.1751238
[13] W. Shi and Y. J. Ding, “Tunable Terahertz Waves Generated by Mixing Two Copropagating Infrared Beams in GaP,” Optics Letters, Vol. 30, No. 9, 2005, pp. 10301032. doi:10.1364/OL.30.001030
[14] I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang and Y. Ueno, “Terahertz-Wave Generation from Quasi-Phase-Matched GaP for 1.55 μm Pumping,” Applied Physics Letters, Vol. 88, No. 7, 2006, pp. 071118. doi:10.1063/1.2174832
[15] K. Kawase, J. Shikata and H. Ito, “Terahertz Wave Parametric Source,” Journal of Physics D: Applied Physics, Vol. 35, No. 3, 2002, pp. R1-R14. doi:10.1088/0022-3727/35/3/201
[16] X.-C. Zhang, Y. Jin and X. F. Ma, “Coherent Measurement of THz Optical Rectification from Electro-Optic Crystals,” Applied Physics Letters, Vol. 61, No. 23, 1992, pp. 2764-2766. doi:10.1063/1.108083
[17] A. Nahata, A. S. Weling and T. F. Heinz, “A Wideband Coherent Terahertz Spectroscopy System Using Optical Rectification and Electro-Optic Sampling,” Applied Physics Letters, Vol. 69, No. 16, 1996, pp. 2321-2323. doi:10.1063/1.117511
[18] J. Nishizawa, T. Tanabe, K. Suto, Y. Watanabe, T. Sasaki and Y. Oyama, “Continuous-Wave Frequency-Tunable Terahertz-Wave Generation from GaP,” IEEE Photonics Technology Letters, Vol. 18, No. 19, 2006, pp. 2008-2010. doi:10.1109/LPT.2006.882278
[19] T. Tanabe, J. Nishizawa, K. Suto, Y. Watanabe, T. Sasaki and Y. Oyama, “Terahertz Wave Generation from GaP with Continuous Wave and Pulse Pumping in the 1–1.2 μm Region,” Materials Transactions, Vol. 48, No. 5, 2007, pp. 980-983. doi:10.2320/matertrans.48.980
[20] J. Nishizawa, T. Sasaki, K. Suto, T. Tanabe, K. Saito, T. Yamada and T. Kimura, “THz transmittance measurements of nucleobases and related molecules in the 0.4to 5.8-THz region using a GaP THz wave generator,” Optics Communication, Vol. 246, No. 1-3, 2005, pp. 229-239. doi:10.1016/j.optcom.2004.10.076
[21] J. Nishizawa, K. Suto, T. Sasaki, T. Tanabe and T. Kimura, “Spectral measurement of terahertz vibrations of biomolecules using a GaP terahertz-wave generator with automatic scanning control,” Journal of Physics D: Applied Physics, Vol. 36, No. 23, 2003, 2958-2961. doi:10.1088/0022-3727/36/23/015
[22] J. Nishizawa, T. Sasaki, K. Suto, T. Tanabe, T. Yoshida, T. Kimura and K. Saito,” Frequency-tunable terahertzwave generation from GaP using Cr:Forsterite lases,” International Journal of Infrared and Millimeter Waves, Vol. 27, No. 6, 2006, pp. 779-789. doi: 10.1007/s10762-006-9125-4
[23] J. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura and Y. Oyama, “THz Generation from GaP Rod-Type WaveGuides,” IEEE Photonics Technology Letters, Vol. 19, No. 3, 2007, pp.143-145. doi:10.1109/LPT.2006.890098
[24] K. Saito, T. Tanabe, Y. Oyama, K. Suto, and J. Nishizawa, “Terahertz-wave generation by GaP rib waveguides via collinear phase-matched difference-frequency mixing of near-infrared lasers,” Journal of Applied Physics, Vol. 105, No. 6, 2009, pp. 063102. doi:10.1063/1.3094012
[25] Y. Jiang, W. Jiang, L. Gu, X. Chen and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Applied Physics Letters, Vol. 87, No. 22, 2005, pp. 221105. doi:10.1063/1.2138367
[26] S. Guo and S. Albin, “Numerical techniques for excitation and analysis of defect modes in photonic crystals,” Optics Express, Vol. 11, No. 9, 2003, pp. 1080-1089. doi:10.1364/OE.11.001080
[27] A. J. Danner, J. J. Raftery, P. O. Leisher and K. D. Choquette, “Single mode photonic crystal vertical cavity lasers,” Applied Physics Letters, Vol. 88, No. 9, 2006, pp. 091114. doi:10.1063/1.2181268
[28] T. A. Birks, D. Mogilevtsev, J. C. Knight and P. St. J. Russell, ” Dispersion compensation using single-material fibers,” IEEE Photonics Technology Letters, Vol.11, No. 6, 1999, pp. 674-676. doi:10.1109/68.766781
[29] T. D. Drysdale, I. S. Gregory, C. Baker, E. H. Linfield, W. R. Tribe and David R. S. Cumming, “Transmittance of a tunable filter at terahertz frequencies,” Applied Physics Letters, Vol.85, No. 22, 2004, pp.5173-5175. doi:10.1063/1.1829798
[30] K. Takagi, K. Seno and A. Kawasaki, “Fabrication of a three-dimensional terahertz photonic crystal using monosized spherical particles,” Applied Physics Letters, Vol. 85, No. 17, 2004, pp. 3681-3683. doi:10.1063/1.1812375
[31] F. Miyamaru, M. Tanaka and M. Hangyo, “Effect of hole diameter on terahertz surface-wave excitation in metalhole arrays,” Physical Review B, Vol. 74, No. 15, 2006, pp. 153416. doi:10.1103/PhysRevB.74.153416
[32] A. L. Bingham and D. Grischkowsky, “High Q, one-dimensional terahertz photonic waveguides,” Applied Physics Letters, Vol. 90, No. 9, 2007, pp. 091105. doi:10.1063/1.2710002
[33] G. Diwa, A. Quema, E. Estacio, R. Probre, H. Murakami, S. Ono and N. Sarukura, “Photonic-crystal-fiber pigtail device integrated with lens-duct optics for terahertz radiation coupling,” Applied Physics Letters, Vol. 87, No. 15, 2005, pp. 151114. doi:10.1063/1.2093941

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.