Electrodeposited Cobalt-Iron Alloy Thin-Film for Potentiometric Hydrogen Phosphate-Ion Sensor


A cobalt-iron alloy thin-film electrode-based electrochemical hydrogen-phosphate-ion sensor was prepared by electrodepositing on an Au-coated Al2O3 substrate from an aqueous solution of metal-salts. The use of a cobalt-iron alloy electrode greatly improved the hydrogen-ion sensor response performance, i.e., the sensor worked stably for more than 7 weeks and showed a quick response time of several seconds. Among the cobalt and iron alloy systems tested, the electrodeposited Co58Fe42 thin-film electrode showed the best EMF response characteristics, i.e., the sensor exhibited a linear potentiometric response to hydrogen-phosphate ion at the concentration range between 1.0 × 10–5 and 1.0 × 10–2 M with the slope of –43 mV/decade at pH 5.0 and at 30℃. A sensing mechanism of the Co-based potentiometric hydrogen-phosphate ion sensor was proposed on the basis of results of instrumental analysis.

Share and Cite:

T. Kidosaki, S. Takase and Y. Shimizu, "Electrodeposited Cobalt-Iron Alloy Thin-Film for Potentiometric Hydrogen Phosphate-Ion Sensor," Journal of Sensor Technology, Vol. 2 No. 3, 2012, pp. 95-101. doi: 10.4236/jst.2012.23014.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. G. Guilbault and P. J. Bringnac, Jr., “Study of Various Inorganic Phosphate Salts Impregnated in Silicone Rubber as Potential Indicating Electrodes for Phosphate Ion,” Analytical Chemistry, Vol. 41, No. 8, 1969, pp. 1136-1138. doi:10.1021/ac60277a027
[2] G. S. Ihn, C. F. Nash and R. P. Buck, “Monohydrogen-phosphate-Sensitive Electrode Formulations,” Analytica Chimica Acta, Vol. 121, 1980, pp. 101-109. doi:10.1016/S0003-2670(01)84404-4
[3] R. K. Meruva and M. E. Meyerhoff, “Mixed Potential Response Mechanism of Cobalt Electrodes toward Inorganic Phosphate,” Analytical Chemistry, Vol. 68, No. 13, 1996, pp. 2022-2026. doi:10.1021/ac951086v
[4] D. Xiao, H.-Y. Yuan, J. Li and R. Q. Yu, “Surface-Modified Cobalt-Based Sensor as a Phosphate-Sensitive Electrode,” Analytical Chemistry, Vol. 67, No. 2, 1995, pp. 288-291. doi:10.1021/ac00098a009
[5] N. Sato and Y. Fukuda, “Anion-Sensing Electrodes Based on Nikel(II) and Copper(II) Mixed Ligand Complexes,” Sensors and Actuators B: Chemical, Vol. 14, No. 1-3, 1993, pp. 743-745. doi:10.1016/0925-4005(93)85167-9
[6] S. A. Glazier and M. A. Arnold, “Selectivity of Membrane Electrodes Based on Derivatives of Dibenzyltin Dichloride,” Analytical Chemistry, Vol. 63, No. 8, 1991, pp. 754-759. doi:10.1021/ac00008a003
[7] J. Liu, Y. Masuda, E. Sekido, S. Wakida and K. Hiiro, “Phosphate Ion-Selective Coated-Wire/Field-Effect Transistor Electrode Based on Cobalt Phthalocyanine with Poly(Vinyl Chloride) as the Membrane Matrix,” Analytica Chimica Acta, Vol. 224, 1989, pp. 145-151. doi:10.1016/S0003-2670(00)83455-8
[8] M. Suzuki, H. Kurata, Y. Inoue, H. Shin, I. Kubo, H. Nakomura, K. Ikebukuro and I. Karube, “Reagentless Phos-Phate Ion Sensor System for Envieonmental Monitoring,” Electrochemistry, Vol. 66, No. 6, 1998, pp. 579-583.
[9] G. C. Petrucelli, E. Y. Kawachi, L. T. Kubota and C. A. Bertran, “Hydroxyapatite-Based Electrode: A New Sensor for Phosphate,” Analytical Communications, Vol. 33, No. 7, 1996, pp. 227-229. doi:10.1039/ac9963300227
[10] Y. Shimizu and Y. Furuta, “An Opto-Electrochemical Phosphate-Ion Sensor Using a Cobalt-Oxide Thin-Film Electrode,” Solid State Ionics, Vol. 113-115, 1998, pp. 241-245. doi:10.1016/S0167-2738(98)00288-4
[11] Y. Shimizu, T. Yamashita and S. Takase, “Electrochromic Phosphate-Ion Sensor Based on Nickel-Oxide Thin-Film Electrode,” Japanese Journal of Applied Physics, Part 2, Vol. 39, 2000, pp. L384-L386. doi:10.1143/JJAP.39.L384
[12] Y. Shimizu, A. Ishikawa, K. Iseki and S. Takase, “Perovskite-Type Oxide Based Electrode: A New Sensor for Hydrogen-Phosphate Ion,” Journal of the Electrochemical Society, Vol. 147, No. 10, 2000, pp. 3931-3934. doi:10.1149/1.1393998
[13] S. Takase, S. Matsumoto and Y. Shimizu, “Preparation of Amperometric Hydrogen-Phosphate Ion Sensor Based on Perovskite-Type Oxide Thick-Film by EPD Process,” Electrochemistry, Vol. 78, No. 2, 2010, pp. 150-152.
[14] M. R. Ganjali, P. Norouzi, M. Ghomi and M. Salavati-Niasari, “Highly Selective and Sensitive Monohydrogen Phosphate Membrane Sensor Based on Molybdenum Acetylacetonate,” Analytica Chimica Acta, Vol. 567, No. 2, 2006, pp. 196-201. doi:10.1016/j.aca.2006.03.026
[15] T. L. Goff , J. Braven, L. Ebdon and D. Scholefield, “Phosphate-Selective Electrodes Containing Immobilised Ionophores,” Analytica Chimica Acta, Vol. 510, No. 2, 2004, pp. 175-182. doi:10.1016/j.aca.2004.01.015
[16] Z. Chen, P. Grierson and M. A. Adams, “Direct Determination of Phosphate in Soil Extracts by Potentiometric Flow Injection Using a Cobalt Wire Electrode,” Analytica Chimica Acta, Vol. 363, No. 2, 1998, pp. 191-197. doi:10.1016/S0003-2670(98)00137-8
[17] S. O. Engblom, “The Phosphate Sensor,” Biosensors and Bioelectronics, Vol. 13, No. 9, 1998, pp. 981-994. doi:10.1016/S0956-5663(98)00001-3
[18] R. D. Marco, B. Peject and Z. Chen, “Flow Injection Potentiometric Determination of Phosphate in Waste and Fertilisers Using a Cobalt Wire Ion-Selective Electrode,” Analyst, Vol. 123, No. 7, 1998, pp. 1635-1640. doi:10.1039/a801244j
[19] Z. Zou, J. Han, A. J. Paul, L. Bishop and C. H. Ahn, “A Disposable On-Chip Phosphate Sensor with Planar Cobalt Microelectrodes on Polymer Substrate,” Biosensors and Bioelectronics, Vol. 22, No. 9-10, 2007, pp. 1902-1907. doi:10.1016/j.bios.2006.08.004
[20] C. W. Tang, C. B. Wang and S. H. Chien, “Characterization of Cobalt Oxides Studied by FT-IR, Raman, TPR and TG-MS,” Thermochimica Acta, Vol. 473, No. 1-2, 2008, pp. 68-73. doi:10.1016/j.tca.2008.04.015
[21] K. Hong, J. Lee, J. Lee, Y.-D. Ko, J.-S. Chung and J.-G. Kim, “Property Changes of Electroplated Cu/Co Alloys and Multilayers by Organic Additives,” Journal of Magnetism and Magnetic Materials, Vol. 304, No. 1, 2006, pp. 60-63. doi:10.1016/j.jmmm.2006.02.008
[22] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder, and G. E. Muilenberg, “Handbook of X-ray Photoelectron Spectroscopy,” Perkin-Elmer, Co., Minnesota, 1979.
[23] M. E. Baydi, S. K. Tiwari, R. N. Singh, J.-L. Rehspringer, P. Chartier, J. F. Koening and G. Poillerat, “High Specific Surface Area Nickel Mixed Oxide Powders LaNiO3 (Perovskite) and NiCo2O4 (Spinel) via Sol-Gel Type Routes for Oxygen Electrocatalysis in Alkaline Media,” Journal of Solid State Chemisty, Vol. 116, No. 1, 1995, pp. 157-169. doi:10.1006/jssc.1995.1197
[24] K. Nakamoto, “Infrared and Raman Spectra of Inorganic and Coordination Compounds,” 5th Edition, Wiley-Inter-science, New York, 1997.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.