Using Magnetic Nanoparticles to Eliminate Oscillations in Saccharomyces cerevisiae Fermentation Processes


This article provides computational evidence to show that functionalized magnetic nanoparticles can eliminate the wasteful oscillatory behavior in fermentation processes involving Saccharomyces cerevisiae. There has been a consi-derable amount of work demonstrating the existence of oscillations in fermentation processes. Recently Reference [1] computationally demonstrated very simple strategies to eliminate the oscillations in the fermentation process. In the case of the of the Saccharomyces cerevisiae fermentation process it was shown that the addition of a little bit of oxygen would be successful in eliminating the oscillation causing Hopf bifurcations. The work of [2,3] demonstrated that oxygen mass transfer could be enhanced by using functionalized magnetic nanoparticles. The aim of this work is to incorporate the model used by [3] regarding the enhancement of oxygen mass transfer in the cybernetic Jones Kompala model [4] describing the dynamics of the Saccharomnyces cerevisiae fermentation process and demonstrate that using the functionalized magnetic nanoparticles can by altering the mass transfer coefficient actually succeed in eliminating the oscillatory behavior that plagues the Saccharomyces cerevisiae fermentation process. This occurs because the oscillation causing Hopf bifurcations are sensitive to the amount of input oxygen and increasing the oxygen mass transfer coefficient causes the disappearance of the Hopf bifurcation points.

Share and Cite:

L. Sridhar, "Using Magnetic Nanoparticles to Eliminate Oscillations in Saccharomyces cerevisiae Fermentation Processes," Journal of Sustainable Bioenergy Systems, Vol. 2 No. 3, 2012, pp. 27-32. doi: 10.4236/jsbs.2012.23004.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. N. Sridhar, “Elimination of Oscillations in Fermentation Processes,” AICHE Journal, Vol. 57, No. 9, 2011, pp. 2397-2405.
[2] B. Olle, S. Bucak, T. C. Holmes , L. Bromberg, A. Hatton and D. I. C. Wang, “Enhancement of Oxygen Mass Transfer Using Functionalized Magnetic Nanoparticles,” Industrial & Engineering Chemistry Research, Vol. 45, No. 12, 2006, pp. 4355-4363.
[3] B. Olle, “Mechanistic Modeling of Increased Oxygen Transport Using Functionalized Magnetic Fluids in Bioreactors,” PhD Thesis, Massachusetts Institute of Technology, Cambridge, 2006,
[4] K. D. Jones and D. S. Kompala, “Cybernetic Model of the Growth Dynamics of the Saccharomyces cerevisiae in Batch and Continuous Cultures,” Journal of Biotechnology, Vol. 71, No. 1-3, 1999, pp. 105-131. doi:10.1016/S0168-1656(99)00017-6
[5] K. J. Lee, D. E. Tribe and P. L. Rogers, “Ethanol Production by Zymomonas mobilis in Continuous Culture at High Glucose Concentrations,” Biotechnology Letters, Vol. 1, No. 10, 1979, pp. 421-426.
[6] K. J. Lee, M. L. Skotnicki, D. E. Tribe and P. L. Rogers, “Kinetic Studies on a Highly Productive Strain of Zymomonas mobilis,” Biotechnology Letters, Vol. 2, No. 8, 1980, pp. 339-344. doi:10.1007/BF00138666
[7] I. M. L. Jobses, G. T. C. Egbertsa, K. C. A. M. Luyben and J. A. Roels, “Fermentation Kinetics of Zymomonas mobilis at High Ethanol Concentrations; Oscillations in Continuous Cultures,” Biotechnology and Bioengineering, Vol. 28, No. 6, 1986, pp. 868-877.
[8] C. Ghommidh, J. Vaija, S. Bolarinwa and J. M. Navarro, “Oscillatory Behavior of Zymomonas mobilis in Continuous Cultures: A Simple Stochastic Model,” Biotechnology Letters, Vol. 11, No. 9, 1989, pp. 659-664.
[9] L. J. Bruce, D. B. Axford, B. Ciszek and J. A. Daugulis, “Extractive Fermentation by Zymomonas mobilis and the Control of Oscillatory Behavior,” Biotechnology Letters, Vol. 13, No. 4, 1991, pp. 291-296. doi:10.1007/BF01041487
[10] L. Perego, J. M. Cabral, S. Dias, L. H. Koshimizu, M. R. De Melo Cruz, W. Borzani and M. L. R. Vairo, “Influence of Temperature, Dilution Rate and Sugar Concentration on the Establishment of Steady-State in Continuous Ethanol Fermentation of Molasses,” Biomass, Vol. 6, No. 3, 1985, pp. 247-256. doi:10.1016/0144-4565(85)90044-7
[11] A. Mulchandani and B. Volesky, “Modelling of the Acetone-Butanol Fermentation with Cell Retention,” Canadian Journal of Chemical Engineering, Vol. 64, No. 4, 1986, pp. 625-631.
[12] C. Strassle, B. Sonnleitner and A. A. Fiechter, “A Predictive Model for the Spontaneous Synchronization of Saccharomyces cerevisiae Grown in Continuous Culture, II. Experimental Verification,” Journal of Biotechnology, Vol. 9, No. 3, 1989, pp. 191-208. doi:10.1016/0168-1656(89)90108-9
[13] H. K. Von Meyenberg, “Stable Synchrony Oscillations in Continuous Culture of Saccharomyces cerevisiae under Glucose Limitation,” In: B. Chance, E. K. Pye, A. K. Shosh and B. Hess, Eds., Biological and Biochemical Oscillators, Academic Press, New York, 1973, pp. 411-417.
[14] Y. Zhang and M. A. Henson, “Bifurcation Analysis of Continuous Biochemical Reactor Models,” Biotechnology Progress, Vol. 17, No. 4, 2001, pp. 647-660. doi:10.1021/bp010048w
[15] D. J. W. Simpson, D. S. Kompala and J. D. Meiss, “Discontinuity Induced Bifurcations in a Model of Saccharomyces cerevisiae,” Mathematical Biosciences, Vol. 218, No. 1, 2009, pp. 40-49. doi:10.1016/j.mbs.2008.12.005
[16] A. Dhooge, W. Govearts and A. Y. Kuznetsov, “MATCONT: A Matlab Package for Numerical Bifurcation Analysis of ODEs,” ACM Transactions on Mathematical Software, Vol. 29, No. 2, 2003, pp. 141-164. doi:10.1145/779359.779362
[17] A. Dhooge, W. Govaerts, Y. A. Kuznetsov, W. Mestrom, A. M. Riet and CL_MATCONT “A Continuation Toolbox in Matlab,” 2004.
[18] S. J. Parulekar, G. B. Semones, M. J. Rolf, J. C. Lievense and H. C. Lim, “Introduction and Elimination of Oscillations in Continuous Cultures of Saccharomyces cerevisiae”, Biotechnology and Bioengineering, Vol. 28, No. 5, 1986, pp. 700-710. doi:10.1002/bit.260280509

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.