Initiation and Regulation of CNS Autoimmunity: Balancing Immune Surveillance and Inflammation in the CNS


While the central nervous system (CNS) was once thought to be immune privileged, more recent data support that certain areas of the healthy CNS are routinely patrolled by immune cells. Further, antigen drainage is another means by which the adaptive arm of the immune system can gain information about the health of the CNS. Altogether these ensure that the CNS is not beyond the scope of immune protection against viruses and tumors. However, immune surveillance in the CNS has to be tightly regulated, as CNS autoimmune disease and inflammation may arise from increased immune cell infiltration. In this review we discuss the concept and implications of CNS immune surveillance and introduce the CNS antigen-presenting cells (APCs) that potentially regulate neuroinflammation and autoimmunity. We also discuss novel animal models in which CNS disease initiation and the role of APCs in disease regulation can be tested.

Share and Cite:

M. Harris and Z. Fabry, "Initiation and Regulation of CNS Autoimmunity: Balancing Immune Surveillance and Inflammation in the CNS," Neuroscience and Medicine, Vol. 3 No. 3, 2012, pp. 203-224. doi: 10.4236/nm.2012.33026.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. R. Caspi, “Immunotherapy of Autoimmunity and Cancer: The Penalty for Success,” Nature Reviews Immunology, Vol. 8, No. 12, 2008, pp. 970-976. doi:10.1038/nri2438
[2] O. Stuve, C. M. Marra, K. R. Jerome, L. Cook, P. D. Cravens, S. Cepok, E. M. Frohman, J. T. Phillips, G. Arendt, B. Hemmer, N. L. Monson and M. K. Racke, “Immune Surveillance in Multiple Sclerosis Patients Treated with Natalizumab,” Annals of Neurology, Vol. 59, No. 5, 2006, pp. 743-747. doi:10.1002/ana.20858
[3] I. Galea, I. Bechmann and V. H. Perry, “What Is Immune Privilege (Not)?” Trends in Immunology, Vol. 28, No. 1, 2007, pp. 12-18. doi:10.1016/
[4] B. Engelhardt and C. Coisne, “Fluids and Barriers of the CNS Establish Immune Privilege by Confining Immune Surveillance to a Two-Walled Castle Moat Surrounding the CNS Castle,” Fluids and Barriers of the CNS, Vol. 8, No. 1, 2011, p. 4. doi:10.1186/2045-8118-8-4
[5] B. T. Hawkins and T. P. Davis, “The Blood-Brain Bar-rier/Neurovascular Unit in Health and Disease,” Pharmacological Reviews, Vol. 57, No. 2, 2005, pp. 173-185. doi:10.1124/pr.57.2.4
[6] P. Kivisakk, D. J. Mahad, M. K. Callahan, C. Trebst, B. Tucky, T. Wei, L. Wu, E. S. Baekkevold, H. Lassmann, S. M. Staugaitis, J. J. Campbell and R. M. Ransohoff, “Human Cerebrospinal Fluid Central Memory CD4+ T Cells: Evidence for Trafficking through Choroid Plexus and Meninges via P-Selectin,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 14, 2003, pp. 8389-8394. doi:10.1073/pnas.1433000100
[7] J. Goverman, “Autoimmune T Cell Responses in the Central Nervous System,” Nature Reviews Immunology, Vol. 9, No. 6, 2009, pp. 393-407. doi:10.1038/nri2550
[8] P. Kivisakk, J. Imitola, S. Rasmussen, W. Elyaman, B. Zhu, R. M. Ransohoff and S. J. Khoury, “Localizing Central Nervous System Immune Surveillance: Meningeal Antigen-Presenting Cells Activate T Cells during Experimental Autoimmune Encephalomyelitis,” Annals of Neurology, Vol. 65, No. 4, 2009, pp. 457-469. doi:10.1002/ana.21379
[9] B. K. Kleinschmidt-DeMasters and K. L. Tyler, “Progressive Multifocal Leukoencephalopathy Complicating treatment with Natalizumab and Interferon Beta-1a for Multiple Sclerosis,” The New England Journal of Medicine, Vol. 353, No. 4, 2005, pp. 369-374. doi:10.1056/NEJMoa051782
[10] A. Langer-Gould, S. W. Atlas, A. J. Green, A. W. Bollen and D. Pelletier, “Progressive Multifocal Leukoencephalopathy in a Patient Treated with Natalizumab,” The New England Journal of Medicine, Vol. 353, No. 4, 2005, pp. 375-381. doi:10.1056/NEJMoa051847
[11] G. Van Assche, M. Van Ranst, R. Sciot, B. Dubois, S. Vermeire, M. Noman, J. Verbeeck, K. Geboes, W. Robberecht and P. Rutgeerts, “Progressive Multifocal Leukoencephalopathy after Natalizumab Therapy for Crohn’s Disease,” The New England Journal of Medicine, Vol. 353, No. 4, 2005, pp. 362-368. doi:10.1056/NEJMoa051586
[12] A. Reboldi, C. Coisne, D. Baumjohann, F. Benvenuto, D. Bottinelli, S. Lira, A. Uccelli, A. Lanzavecchia, B. Engelhardt and F. Sallusto, “C-C Chemokine Receptor 6-Regulated Entry of TH-17 Cells into the CNS through the Choroid Plexus Is Required for the Initiation of EAE,” Nature Immunology, Vol. 10, No. 5, 2009, pp. 514-523. doi:10.1038/ni.1716
[13] C. L. Langrish, Y. Chen, W. M. Blumenschein, J. Mattson, B. Basham, J. D. Sedgwick, T. McClanahan, R. A. Kastelein and D. J. Cua, “IL-23 Drives a Pathogenic T Cell Population That Induces Autoimmune Inflammation,” The Journal of Experimental Medicine, Vol. 201, No. 2, 2005, pp. 233-240. doi:10.1084/jem.20041257
[14] A. Peters, L. A. Pitcher, J. M. Sullivan, M. Mitsdoerffer, S. E. Acton, B. Franz, K. Wucherpfennig, S. Turley, M. C. Carroll, R. A. Sobel, E. Bettelli and V. K. Kuchroo, “Th17 Cells Induce Ectopic Lymphoid Follicles in Central Nervous System Tissue Inflammation,” Immunity, Vol. 35, No. 6, 2011, pp. 986-996. doi:10.1016/j.immuni.2011.10.015
[15] R. Magliozzi, S. Columba-Cabezas, B. Serafini and F. Aloisi, “Intracerebral Expression of CXCL13 and BAFF Is Accompanied by Formation of Lymphoid Follicle-Like Structures in the Meninges of Mice with Relapsing Experimental Autoimmune Encephalomyelitis,” Journal of Neuroimmunology, Vol. 148, No. 1-2, 2004, pp. 11-23. doi:10.1016/j.jneuroim.2003.10.056
[16] R. Magliozzi, O. Howell, A. Vora, B. Serafini, R. Nicholas, M. Puopolo, R. Reynolds and F. Aloisi, “Meningeal B-Cell Follicles in Secondary Progressive Multiple Sclerosis Associate with Early Onset of Disease and Severe Cortical Pathology,” Brain, Vol. 130, No. 4, 2007, pp. 1089-1104.
[17] B. Serafini, B. Rosicarelli, R. Magliozzi, E. Stigliano and F. Aloisi, “Detection of Ectopic B-Cell Follicles with Germinal Centers in the Meninges of Patients with Secondary Progressive Multiple Sclerosis,” Brain Pathology, Vol. 14, No. 2, 2004, pp. 164-174. doi:10.1111/j.1750-3639.2004.tb00049.x
[18] A. P. Byrnes, J. E. Rusby, M. J. Wood and H. M. Charlton, “Adenovirus Gene Transfer Causes Inflammation in the Brain,” Neuroscience, Vol. 66, No. 4, 1995, pp. 1015-1024. doi:10.1016/0306-4522(95)00068-T
[19] M. K. Matyszak, “Inflammation in the CNS: Balance between Immunological Privilege and Immune Responses,” Progress in Neurobiology, Vol. 56, No. 1, 1998, pp. 19-35. doi:10.1016/S0301-0082(98)00014-8
[20] M. K. Matyszak and V. H. Perry, “Demyelination in the Central Nervous System Following a Delayed-Type Hypersensitivity Response to Bacillus Calmette-Guerin,” Neuroscience, Vol. 64, No. 4, 1995, pp. 967-977. doi:10.1016/0306-4522(94)00448-E
[21] M. K. Matyszak, M. J. Townsend and V. H. Perry, “Ultrastructural Studies of an Immune-Mediated Inflammatory Response in the CNS Parenchyma Directed against a Non-CNS Antigen,” Neuroscience, Vol. 78, No. 2, 1997, pp. 549-560. doi:10.1016/S0306-4522(96)00578-7
[22] H. F. Cserr and P. M. Knopf, “Cervical Lymphatics, the Blood-Brain Barrier and the Immunoreactivity of the Brain: A New View,” Immunology Today, Vol. 13, No. 12, 1992, pp. 507-512. doi:10.1016/0167-5699(92)90027-5
[23] S. Yamada, M. DePasquale, C. S. Patlak and H. F. Cserr, “Albumin Outflow into Deep Cervical Lymph from Different Regions of Rabbit Brain,” American Journal of Physiology, Vol. 261, No. 4, 1991, pp. H1197-H1204.
[24] L. B. Gordon, P. M. Knopf and H. F. Cserr, “Ovalbumin Is More Immunogenic When Introduced into Brain or Cerebrospinal Fluid than Into Extracerebral Sites,” Journal of Neuroimmunology, Vol. 40, No. 1, 1992, pp. 81-87. doi:10.1016/0165-5728(92)90215-7
[25] C. Harling-Berg, P. M. Knopf, J. Merriam and H. F. Cserr, “Role of Cervical Lymph Nodes in the Systemic Humoral Immune Response to Human Serum Albumin Microinfused into Rat Cerebrospinal Fluid,” Journal of Neuro-immunology, Vol. 25, No. 2-3, 1989, pp. 185-193. doi:10.1016/0165-5728(89)90136-7
[26] J. Karman, C. Ling, M. Sandor and Z. Fabry, “Initiation of Immune Responses in Brain Is Promoted by Local Dendritic Cells,” The Journal of Immunology, Vol. 173, No. 4, 2004, pp. 2353-2361.
[27] C. Ling, M. Sandor and Z. Fabry, “In Situ Processing and Distribution of Intracerebrally Injected OVA in the CNS,” Journal of Neuroimmunology, Vol. 141, No. 1-2, 2003, pp. 90-98. doi:10.1016/S0165-5728(03)00249-2
[28] C. Ling, M. Sandor, M. Suresh and Z. Fabry, “Traumatic Injury and the Presence of Antigen Differentially Contribute to T-Cell Recruitment in the CNS,” The Journal of Neuroscience, Vol. 26, No. 3, 2006, pp. 731-741. doi:10.1523/JNEUROSCI.3502-05.2006
[29] Z. Qing, D. Sewell, M. Sandor and Z. Fabry, “antigen-Specific T Cell Trafficking into the Central Nervous System,” Journal of Neuroimmunology, Vol. 105, No. 2, 2000, pp. 169-178. doi:10.1016/S0165-5728(99)00265-9
[30] M. Sanchez-Ruiz, L. Wilden, W. Muller, W. Stenzel, A. Brunn, H. Miletic, D. Schluter and M. Deckert, “Molecular Mimicry between Neurons and an Intracerebral Pathogen Induces a CD8 T Cell-Mediated Autoimmune Disease,” The Journal of Immunology, Vol. 180, No. 12, 2008, pp. 8421-8433.
[31] T. Scheikl, B. Pignolet, C. Dalard, S. Desbois, D. Raison, M. Yamazaki, A. Saoudi, J. Bauer, H. Lassmann, H. Hardin-Pouzet and R. S. Liblau, “Cutting Edge: Neuronal Recognition by CD8 T Cells Elicits Central Diabetes Insipidus,” The Journal of Immunology, Vol. 188, No. 10, 2012, pp. 4731-4735. doi:10.4049/jimmunol.1102998
[32] A. Cornet, T. C. Savidge, J. Cabarrocas, W. L. Deng, J. F. Colombel, H. Lassmann, P. Desreumaux and R. S. Liblau, “Enterocolitis Induced by Autoimmune Targeting of Enteric Glial Cells: A Possible Mechanism in Crohn’s Disease?” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 23, 2001, pp. 13306-13311. doi:10.1073/pnas.231474098
[33] Y. Cao, C. Toben, S. Y. Na, K. Stark, L. Nitschke, A. Peterson, R. Gold, A. Schimpl and T. Hunig, “Induction of Experimental Autoimmune Encephalomyelitis in Transgenic Mice Expressing Ovalbumin in Oligodendrocytes,” European Journal of Immunology, Vol. 36, No. 1, 2006, pp. 207-215. doi:10.1002/eji.200535211
[34] A. Saxena, J. Bauer, T. Scheikl, J. Zappulla, M. Audebert, S. Desbois, A. Waisman, H. Lassmann, R. S. Liblau and L. T. Mars, “Cutting Edge: Multiple Sclerosis-Like Lesions Induced by Effector CD8 T Cells Recognizing a Sequestered Antigen on Oligodendrocytes,” The Journal of Immunology, Vol. 181, No. 3, 2008, pp. 1617-1621.
[35] A. Schildknecht, H. C. Probst, K. D. McCoy, I. Miescher, C. Brenner, D. P. Leone, U. Suter, P. S. Ohashi and M. van den Broek, “Antigens Expressed by Myelinating Glia Cells Induce Peripheral Cross-Tolerance of Endogenous CD8+ T Cells,” European Journal of Immunology, Vol. 39, No. 6, 2009, pp. 1505-1515. doi:10.1002/eji.200839019
[36] J. Jung and M. Michalak, “Cell Surface Targeting of Myelin Oligodendrocyte Glycoprotein (MOG) in the Absence of Endoplasmic Reticulum Molecular Chaperones,” Biochimica et Biophysica Acta, Vol. 1813, No. 5, 2011, pp. 1105-1110. doi:10.1016/j.bbamcr.2010.12.014
[37] N. Hovelmeyer, Z. Hao, K. Kranidioti, G. Kassiotis, T. Buch, F. Frommer, L. von Hoch, D. Kramer, L. Minichiello, G. Kollias, H. Lassmann and A. Waisman, “Apoptosis of Oligodendrocytes via Fas and TNF-R1 Is a Key Event in the Induction of Experimental Autoimmune Encephalomyelitis,” The Journal of Immunology, Vol. 175, No. 9, 2005, pp. 5875-5884.
[38] E. Barbarese, C. Barry, C. H. Chou, D. J. Goldstein, G. A. Nakos, R. Hyde-DeRuyscher, K. Scheld and J. H. Carson, “Expression and Localization of Myelin Basic Protein in Oligodendrocytes and Transfected Fibroblasts,” Journal of Neurochemistry, Vol. 51, No. 6, 1988, pp. 1737-1745. doi:10.1111/j.1471-4159.1988.tb01153.x
[39] S. Y. Na, Y. Cao, C. Toben, L. Nitschke, C. Stadelmann, R. Gold, A. Schimpl and T. Hunig, “Naive CD8 T-Cells Initiate Spontaneous Autoimmunity to a Sequestered Model Antigen of the Central Nervous System,” Brain, Vol. 131, No. 9, 2008, pp. 2353-2365.
[40] V. S. Schwob, H. B. Clark, D. Agrawal and H. C. Agrawal, “Electron Microscopic Immunocytochemical Localization of Myelin Proteolipid Protein and Myelin Basic Protein to Oligodendrocytes in Rat Brain during Myelination,” Journal of Neurochemistry, Vol. 45, No. 2, 1985, pp. 559-571. doi:10.1111/j.1471-4159.1985.tb04024.x
[41] D. P. Leone, S. Genoud, S. Atanasoski, R. Grausenburger, P. Berger, D. Metzger, W. B. Macklin, P. Chambon and U. Suter, “Tamoxifen-Inducible Glia-Specific Cre Mice for Somatic Mutagenesis in Oligodendrocytes and Schwann Cells,” Molecular and Cellular Neuroscience, Vol. 22, No. 4, 2003, pp. 430-440. doi:10.1016/S1044-7431(03)00029-0
[42] M. Jeffrey, G. A. Wells and A. W. Bridges, “An Immu-nohistochemical Study of the Topography and Cellular Localization of Three Neural Proteins in the Sheep Nervous System,” Journal of Comparative Pathology, Vol. 103, No. 1, 1990, pp. 23-35. doi:10.1016/S0021-9975(08)80132-6
[43] P. J. Marangos and D. E. Schmechel, “Neuron Specific Enolase, a Clinically Useful Marker for Neurons and Neuroendocrine Cells,” Annual Review of Neuroscience, Vol. 10, 1987, pp. 269-295. doi:10.1146/
[44] K. Shen, M. N. Teruel, K. Subramanian and T. Meyer, “CaMKIIbeta Functions as an F-Actin Targeting Module That Localizes CaMKIIalpha/Beta Heterooligomers to Dendritic Spines,” Neuron, Vol. 21, No. 3, 1998, pp. 593-606. doi:10.1016/S0896-6273(00)80569-3
[45] E. Casanova, S. Fehsenfeld, T. Mantamadiotis, T. Lemberger, E. Greiner, A. F. Stewart and G. Schutz, “A CamKIIalpha iCre BAC Allows Brain-Specific Gene Inactivation,” Genesis, Vol. 31, No. 1, 2001, pp. 37-42. doi:10.1002/gene.1078
[46] A. J. Slavin, J. M. Soos, O. Stuve, J. C. Patarroyo, H. L. Weiner, A. Fontana, E. K. Bikoff and S. S. Zamvil, “Requirement for Endocytic Antigen Processing and Influence of Invariant Chain and H-2M Deficiencies in CNS Autoimmunity,” The Journal of Clinical Investigation, Vol. 108, No. 8, 2001, pp. 1133-1139.
[47] M. L. Krakowski and T. Owens, “Naive T Lymphocytes Traffic to Inflamed Central Nervous System, but Require Antigen Recognition for Activation,” European Journal of Immunology, Vol. 30, No. 4, 2000, pp. 1002-1009. doi:10.1002/(SICI)1521-4141(200004)30:4<1002::AID-IMMU1002>3.0.CO;2-2
[48] M. K. Matyszak and V. H. Perry, “The Potential Role of Dendritic Cells in Immune-Mediated Inflammatory diseases in the Central Nervous System,” Neuroscience, Vol. 74, No. 2, 1996, pp. 599-608. doi:10.1016/0306-4522(96)00160-1
[49] P. G. McMenamin, “Distribution and Phenotype of Dendritic Cells and Resident Tissue Macrophages in the Dura Mater, Leptomeninges, and Choroid Plexus of the Rat Brain as Demonstrated in Whole Mount Preparations,” The Journal of Comparative Neurology, Vol. 405, No. 4, 1999, pp. 553-562. doi:10.1002/(SICI)1096-9861(19990322)405:4<553::AID-CNE8>3.0.CO;2-6
[50] N. Anandasabapathy, G. D. Victora, M. Meredith, R. Feder, B. Dong, C. Kluger, K. Yao, M. L. Dustin, M. C. Nussenzweig, R. M. Steinman and K. Liu, “Flt3L Controls the Development of Radiosensitive Dendritic Cells in the Meninges and Choroid Plexus of the Steady-State Mouse Brain,” The Journal of Experimental Medicine, Vol. 208, No. 8, 2011, pp. 1695-1705. doi:10.1084/jem.20102657
[51] H. G. Fischer, U. Bonifas and G. Reichmann, “Phenotype and Functions of Brain Dendritic Cells Emerging during Chronic Infection of Mice with Toxoplasma Gondii,” The Journal of Immunology, Vol. 164, No. 9, 2000, pp. 4826- 4834.
[52] B. Serafini, S. Columba-Cabezas, F. Di Rosa and F. Aloisi, “Intracerebral Recruitment and Maturation of Dendritic Cells in the Onset and Progression of Experimental Autoimmune Encephalomyelitis,” The American Journal of Pathology, Vol. 157, No. 6, 2000, pp. 1991- 2002. doi:10.1016/S0002-9440(10)64838-9
[53] B. Serafini, B. Rosicarelli, R. Magliozzi, E. Stigliano, E. Capello, G. L. Mancardi and F. Aloisi, “Dendritic Cells in Multiple Sclerosis Lesions: Maturation Stage, Myelin Uptake, and Interaction with Proliferating T Cells,” Journal of Neuropathology & Experimental Neurology, Vol. 65, No. 2, 2006, pp. 124-141. doi:10.1097/01.jnen.0000199572.96472.1c
[54] M. A. Friese and L. Fugger, “Pathogenic CD8(+) T Cells in Multiple Sclerosis,” Annals of Neurology, Vol. 66, No. 2, 2009, pp. 132-141. doi:10.1002/ana.21744
[55] S. Bourdoulous, E. Beraud, C. Le Page, A. Zamora, A. Ferry, D. Bernard, A. D. Strosberg and P. O. Couraud, “Anergy Induction in Encephalitogenic T Cells by Brain Microvessel Endothelial Cells Is Inhibited by Inter-leukin-1,” European Journal of Immunology, Vol. 25, No. 5, 1995, pp. 1176-1183. doi:10.1002/eji.1830250507
[56] B. O. Fabriek, E. S. Van Haastert, I. Galea, M. M. Polfliet, E. D. Dopp, M. M. Van Den Heuvel, T. K. Van Den Berg, C. J. De Groot, P. Van Der Valk and C. D. Dijkstra, “CD163-Positive Perivascular Macrophages in the Human CNS Express Molecules for Antigen Recognition and Presentation,” Glia, Vol. 51, No. 4, 2005, pp. 297- 305. doi:10.1002/glia.20208
[57] E. C. Henning, C. A. Ruetzler, M. R. Gaudinski, T. C. Hu, L. L. Latour, J. M. Hallenbeck and S. Warach, “Feridex Preloading Permits Tracking of CNS-Resident Macrophages after Transient Middle Cerebral Artery Occlusion,” Journal of Cerebral Blood Flow & Metabolism, Vol. 29, No. 7, 2009, pp. 1229-1239. doi:10.1038/jcbfm.2009.48
[58] W. F. Hickey and H. Kimura, “Perivascular Microglial Cells of the CNS Are Bone Marrow-Derived and Present Antigen in Vivo,” Science, Vol. 239, No. 4837, 1988, pp. 290-292. doi:10.1126/science.3276004
[59] M. M. Polfliet, F. van de Veerdonk, E. A. Dopp, E. M. van Kesteren-Hendrikx, N. van Rooijen, C. D. Dijkstra and T. K. van den Berg, “The Role of Perivascular and Meningeal Macrophages in Experimental Allergic Encephalomyelitis,” Journal of Neuroimmunology, Vol. 122, No. 1-2, 2002, pp. 1-8. doi:10.1016/S0165-5728(01)00445-3
[60] W. E. Thomas, “Brain Macrophages: On the Role of Pericytes and Perivascular Cells,” Brain Research Reviews, Vol. 31, No. 1, 1999, pp. 42-57. doi:10.1016/S0165-0173(99)00024-7
[61] H. Kettenmann, U. K. Hanisch, M. Noda and A. Verkhratsky, “Physiology of Microglia,” Physiological Reviews, Vol. 91, No. 2, 2011, pp. 461-553. doi:10.1152/physrev.00011.2010
[62] F. Ginhoux, M. Greter, M. Leboeuf, S. Nandi, P. See, S. Gokhan, M. F. Mehler, S. J. Conway, L. G. Ng, E. R. Stanley, I. M. Samokhvalov and M. Merad, “Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages,” Science, Vol. 330, No. 6005, 2010, pp. 841-845. doi:10.1126/science.1194637
[63] S. H. Orkin and L. I. Zon, “Hematopoiesis: An Evolving Paradigm for Stem Cell Biology,” Cell, Vol. 132, No. 4, 2008, pp. 631-644. doi:10.1016/j.cell.2008.01.025
[64] H. Neumann, M. R. Kotter and R. J. Franklin, “Debris Clearance by Microglia: An Essential Link between Degeneration and Regeneration,” Brain, Vol. 132, No. 2, 2009, pp. 288-295.
[65] M. B. Graeber, “Changing Face of Microglia,” Science, Vol. 330, No. 6005, 2010, pp. 783-788. doi:10.1126/science.1190929
[66] F. Aloisi, “Immune Function of Microglia,” Glia, Vol. 36, No. 2, 2001, pp. 165-179. doi:10.1002/glia.1106
[67] K. Saijo and C. K. Glass, “Microglial Cell Origin and Phenotypes in Health and Disease,” Nature Reviews Immunology, Vol. 11, No. 11, 2011, pp. 775-787. doi:10.1038/nri3086
[68] F. Aloisi, F. Ria and L. Adorini, “Regulation of T-Cell Responses by CNS Antigen-Presenting Cells: Different Roles for Microglia and Astrocytes,” Immunology Today, Vol. 21, No. 3, 2000, pp. 141-147. doi:10.1016/S0167-5699(99)01512-1
[69] M. K. Matyszak, S. Denis-Donini, S. Citterio, R. Longhi, F. Granucci and P. Ricciardi-Castagnoli, “Microglia Induce Myelin Basic Protein-Specific T Cell Anergy or T Cell Activation, According to Their State of Activation,” European Journal of Immunology, Vol. 29, No. 10, 1999, pp. 3063-3076. doi:10.1002/(SICI)1521-4141(199910)29:10<3063::AID-IMMU3063>3.0.CO;2-G
[70] F. Aloisi, F. Ria, S. Columba-Cabezas, H. Hess, G. Penna and L. Adorini, “Relative Efficiency of Microglia, Astrocytes, Dendritic Cells and B Cells in Naive CD4+ T Cell Priming and Th1/Th2 Cell Restimulation,” European Journal of Immunology, Vol. 29, No. 9, 1999, pp. 2705- 2714. doi:10.1002/(SICI)1521-4141(199909)29:09<2705::AID-IMMU2705>3.0.CO;2-1
[71] E. J. McMahon, S. L. Bailey, C. V. Castenada, H. Waldner and S. D. Miller, “Epitope Spreading Initiates in the CNS in Two Mouse Models of Multiple Sclerosis,” Nature Medicine, Vol. 11, No. 3, 2005, pp. 335-339. doi:10.1038/nm1202
[72] [72] C. Beauvillain, S. Donnou, U. Jarry, M. Scotet, H. Gascan, Y. Delneste, P. Guermonprez, P. Jeannin and D. Couez, “Neonatal and Adult Microglia Cross-Present Exogenous Antigens,” Glia, Vol. 56, No. 1, 2008, pp. 69-77. doi:10.1002/glia.20565
[73] F. Aloisi, F. Ria, G. Penna and L. Adorini, “Microglia Are More Efficient than Astrocytes in Antigen Processing and in Th1 but Not Th2 Cell Activation,” The Journal of Immunology, Vol. 160, No. 10, 1998, pp. 4671-4680.
[74] E. D. Ponomarev, L. P. Shriver, K. Maresz and B. N. Dittel, “Microglial Cell Activation and Proliferation Precedes the Onset of CNS Autoimmunity,” Journal of Neu-roscience Research, Vol. 81, No. 3, 2005, pp. 374-389. doi:10.1002/jnr.20488
[75] A. C. Murphy, S. J. Lalor, M. A. Lynch and K. H. Mills, “Infiltration of Th1 and Th17 Cells and Activation of Microglia in the CNS during the Course of Experimental Autoimmune Encephalomyelitis,” Brain, Behavior, and Immunity, Vol. 24, No. 4, 2010, pp. 641-651. doi:10.1016/j.bbi.2010.01.014
[76] F. L. Heppner, M. Greter, D. Marino, J. Falsig, G. Raivich, N. Hovelmeyer, A. Waisman, T. Rulicke, M. Prinz, J. Priller, B. Becher and A. Aguzzi, “Experimental Autoimmune Encephalomyelitis Repressed by Microglial Paralysis,” Nature Medicine, Vol. 11, No. 2, 2005, pp. 146-152. doi:10.1038/nm1177
[77] A. L. Ford, E. Foulcher, F. A. Lemckert and J. D. Sedgwick, “Microglia Induce CD4 T Lymphocyte Final Effector Function and Death,” The Journal of Experimental Medicine, Vol. 184, No. 5, 1996, pp. 1737-1745. doi:10.1084/jem.184.5.1737
[78] F. Geissmann, M. G. Manz, S. Jung, M. H. Sieweke, M. Merad and K. Ley, “Development of Monocytes, Macrophages, and Dendritic Cells,” Science, Vol. 327, No. 5966, 2010, pp. 656-661. doi:10.1126/science.1178331
[79] E. D. Ponomarev, K. Maresz, Y. Tan and B. N. Dittel, “CNS-Derived Interleukin-4 Is Essential for the Regulation of Autoimmune Inflammation and Induces a State of Alternative Activation in Microglial Cells,” The Journal of Neuroscience, Vol. 27, No. 40, 2007, pp. 10714-10721. doi:10.1523/JNEUROSCI.1922-07.2007
[80] K. A. Kigerl, J. C. Gensel, D. P. Ankeny, J. K. Alexander, D. J. Donnelly and P. G. Popovich, “Identification of Two Distinct Macrophage Subsets with Divergent Effects Causing Either Neurotoxicity or Regeneration in the Injured Mouse Spinal Cord,” The Journal of Neuroscience, Vol. 29, No. 43, 2009, pp. 13435-13444. doi:10.1523/JNEUROSCI.3257-09.2009
[81] Z. Zhang, Z. Y. Zhang, J. Schittenhelm, Y. Wu, R. Meyermann and H. J. Schluesener, “Parenchymal Accumulation of CD163+ Macrophages/Microglia in Multiple Sclerosis Brains,” Journal of Neuroimmunology, Vol. 237, No. 1-2, 2011, pp. 73-79. doi:10.1016/j.jneuroim.2011.06.006
[82] B. Ajami, J. L. Bennett, C. Krieger, K. M. McNagny and F. M. Rossi, “Infiltrating Monocytes Trigger EAE Progression, but Do Not Contribute to the Resident Microglia Pool,” Nature Neuroscience, Vol. 14, No. 9, 2011, pp. 1142-1149. doi:10.1038/nn.2887
[83] B. Almolda, B. Gonzalez and B. Castellano, “Activated Microglial Cells Acquire an Immature Dendritic Cell Phenotype and May Terminate the Immune Response in an Acute Model of EAE,” Journal of Neuroimmunology, Vol. 223, No. 1-2, 2010, pp. 39-54. doi:10.1016/j.jneuroim.2010.03.021
[84] K. D. McCoy and G. Le Gros, “The Role of CTLA-4 in the Regulation of T Cell Immune Responses,” Immunology & Cell Biology, Vol. 77, No. 1, 1999, pp. 1-10. doi:10.1046/j.1440-1711.1999.00795.x
[85] N. J. Allen and B. A. Barres, “Neuroscience: Glia More than Just Brain Glue,” Nature, Vol. 457, No. 7230, 2009, pp. 675-677. doi:10.1038/457675a
[86] G. C. Petzold and V. N. Murthy, “Role of Astrocytes in Neurovascular Coupling,” Neuron, Vol. 71, No. 5, 2011, pp. 782-797. doi:10.1016/j.neuron.2011.08.009
[87] P. A. Carpentier, W. S. Begolka, J. K. Olson, A. Elhofy, W. J. Karpus and S. D. Miller, “Differential Activation of Astrocytes by Innate and Adaptive Immune Stimuli,” Glia, Vol. 49, No. 3, 2005, pp. 360-374. doi:10.1002/glia.20117
[88] A. Fontana, W. Fierz and H. Wekerle, “Astrocytes Present Myelin Basic Protein to Encephalitogenic T-Cell lines,” Nature, Vol. 307, No. 5948, 1984, pp. 273-276. doi:10.1038/307273a0
[89] J. M. Soos, J. Morrow, T. A. Ashley, B. E. Szente, E. K. Bikoff and S. S. Zamvil, “Astrocytes Express Elements of the Class II Endocytic Pathway and Process Central Nervous System Autoantigen for Presentation to Encephalitogenic T Cells,” The Journal of Immunology, Vol. 161, No. 11, 1998, pp. 5959-5966.
[90] O. Stuve, S. Youssef, A. J. Slavin, C. L. King, J. C. Patarroyo, D. L. Hirschberg, W. J. Brickey, J. M. Soos, J. F. Piskurich, H. A. Chapman and S. S. Zamvil, “The Role of the MHC Class II Transactivator in Class II Expression and Antigen Presentation by Astrocytes and in Susceptibility to Central Nervous System Autoimmune Disease,” The Journal of Immunology, Vol. 169, No. 12, 2002, pp. 6720-6732.
[91] A. Cornet, E. Bettelli, M. Oukka, C. Cambouris, V. Avellana-Adalid, K. Kosmatopoulos and R. S. Liblau, “Role of Astrocytes in Antigen Presentation and Naive T-Cell Activation,” Journal of Neuroimmunology, Vol. 106, No. 1-2, 2000, pp. 69-77. doi:10.1016/S0165-5728(99)00215-5
[92] K. Baur, M. Rauer, K. Richter, A. Pagenstecher, J. Gotz, J. Hausmann and P. Staeheli, “Antiviral CD8 T Cells Recognize Borna Disease Virus Antigen Transgenically Expressed in Either Neurons or Astrocytes,” Journal of Virology, Vol. 82, No. 6, 2008, pp. 3099-3108. doi:10.1128/JVI.02479-07
[93] K. Williams, E. Ulvestad, A. Waage, J. P. Antel and J. McLaurin, “Activation of Adult Human Derived Microglia by Myelin Phagocytosis in Vitro,” Journal of Neuro-science Research, Vol. 38, No. 4, 1994, pp. 433-443. doi:10.1002/jnr.490380409
[94] R. M. Ransohoff and M. A. Brown, “Innate Immunity in the Central Nervous System,” The Journal of Clinical Investigation, Vol. 122, No. 4, 2012, pp. 1164-1171. doi:10.1172/JCI58644
[95] D. N. Hart and J. W. Fabre, “Demonstration and Characterization of Ia-Positive Dendritic Cells in the Interstitial Connective Tissues of Rat Heart and Other Tissues, but Not Brain,” The Journal of Experimental Medicine, Vol. 154, No. 2, 1981, pp. 347-361. doi:10.1084/jem.154.2.347
[96] R. M. Steinman and Z. A. Cohn, “Identification of a Novel Cell Type in Peripheral Lymphoid Organs of Mice. I. Morphology, Quantitation, Tissue Distribution,” The Journal of Experimental Medicine, Vol. 137, No. 5, 1973, pp. 1142-1162. doi:10.1084/jem.137.5.1142
[97] P. G. McMenamin, R. J. Wealthall, M. Deverall, S. J. Cooper and B. Griffin, “Macrophages and Dendritic Cells in the Rat Meninges and Choroid Plexus: Three-Dimensional Localisation by Environmental Scanning Electron Microscopy and Confocal Microscopy,” Cell and Tissue Research, Vol. 313, No. 3, 2003, pp. 259-269. doi:10.1007/s00441-003-0779-0
[98] M. Pashenkov, Y. M. Huang, V. Kostulas, M. Haglund, M. Soderstrom and H. Link, “Two Subsets of Dendritic Cells Are Present in Human Cerebrospinal Fluid,” Brain, Vol. 124, No. 3, 2001, pp. 480-492.
[99] M. Greter, F. L. Heppner, M. P. Lemos, B. M. Odermatt, N. Goebels, T. Laufer, R. J. Noelle and B. Becher, “Dendritic Cells Permit Immune Invasion of the CNS in an Animal Model of Multiple Sclerosis,” Nature Medicine, Vol. 11, No. 3, 2005, pp. 328-334. doi:10.1038/nm1197
[100] J. Karman, H. H. Chu, D. O. Co, C. M. Seroogy, M. Sandor and Z. Fabry, “Dendritic Cells Amplify T Cell- Mediated Immune Responses in the Central Nervous System,” The Journal of Immunology, Vol. 177, No. 11, 2006, pp. 7750-7760.
[101] J. M. Goverman, “Immune Tolerance in Multiple Sclerosis,” Immunological Reviews, Vol. 241, No. 1, 2011, pp. 228-240. doi:10.1111/j.1600-065X.2011.01016.x
[102] J. M. Ilarregui and G. A. Rabinovich, “Tolerogenic Dendritic Cells in the Control of Autoimmune Neuroinflammation: An Emerging Role of Protein-Glycan Interactions,” Neuroimmunomodulation, Vol. 17, No. 3, 2010, pp. 157-160. doi:10.1159/000258712
[103] M. Ioannou, T. Alissafi, I. Lazaridis, G. Deraos, J. Matsoukas, A. Gravanis, V. Mastorodemos, A. Plaitakis, A. Sharpe, D. Boumpas and P. Verginis, “Crucial Role of Granulocytic Myeloid-Derived Suppressor Cells in the Regulation of Central Nervous System Autoimmune Disease,” The Journal of Immunology, Vol. 188, No. 3, 2012, pp. 1136-1146. doi:10.4049/jimmunol.1101816
[104] L. Walter and M. L. Albert, “Cutting Edge: Cross-Presented Intracranial Antigen Primes CD8+ T cells,” The Journal of Immunology, Vol. 178, No. 10, 2007, pp. 6038-6042.
[105] L. Santambrogio, S. L. Belyanskaya, F. R. Fischer, B. Cipriani, C. F. Brosnan, P. Ricciardi-Castagnoli, L. J. Stern, J. L. Strominger and R. Riese, “Developmental Plasticity of CNS Microglia,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 11, 2001, pp. 6295-6300. doi:10.1073/pnas.111152498
[106] S. Jung, D. Unutmaz, P. Wong, G. Sano, K. De los Santos, T. Sparwasser, S. Wu, S. Vuthoori, K. Ko, F. Zavala, E. G. Pamer, D. R. Littman and R. A. Lang, “In Vivo Depletion of CD11c+ Dendritic Cells Abrogates Priming of CD8+ T Cells by Exogenous Cell-Associated Antigens,” Immunity, Vol. 17, No. 2, 2002, pp. 211-220. doi:10.1016/S1074-7613(02)00365-5
[107] R. L. Lindquist, G. Shakhar, D. Dudziak, H. Wardemann, T. Eisenreich, M. L. Dustin and M. C. Nussenzweig, “Visualizing Dendritic Cell Networks in Vivo,” Nature Immunology, Vol. 5, No. 12, 2004, pp. 1243-1250. doi:10.1038/ni1139
[108] K. Bulloch, M. M. Miller, J. Gal-Toth, T. A. Milner, A. Gottfried-Blackmore, E. M. Waters, U. W. Kaunzner, K. Liu, R. Lindquist, M. C. Nussenzweig, R. M. Steinman and B. S. McEwen, “CD11c/EYFP Transgene Illuminates a Discrete Network of Dendritic Cells within the Embryonic, Neonatal, Adult, and Injured Mouse Brain,” The Journal of Comparative Neurology, Vol. 508, No. 5, 2008, pp. 687-710. doi:10.1002/cne.21668
[109] C. Prodinger, J. Bunse, M. Kruger, F. Schiefenhovel, C. Brandt, J. D. Laman, M. Greter, K. Immig, F. Heppner, B. Becher and I. Bechmann, “CD11c-Expressing Cells Reside in the Juxtavascular Parenchyma and Extend Processes into the Glia Limitans of the Mouse Nervous System,” Acta Neuropathologica, Vol. 121, No. 4, 2011, pp. 445-458. doi:10.1007/s00401-010-0774-y
[110] A. Gottfried-Blackmore, U. W. Kaunzner, J. Idoyaga, J. C. Felger, B. S. McEwen and K. Bulloch, “Acute in Vivo Exposure to Interferon-Gamma Enables Resident Brain Dendritic Cells to Become Effective Antigen Presenting Cells,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 49, 2009, pp. 20918-20923. doi:10.1073/pnas.0911509106
[111] F. Geissmann, S. Gordon, D. A. Hume, A. M. Mowat and G. J. Randolph, “Unravelling Mononuclear Phagocyte Heterogeneity,” Nature Reviews Immunology, Vol. 10, No. 6, 2010, pp. 453-460. doi:10.1038/nri2784
[112] S. L. Bailey, B. Schreiner, E. J. McMahon and S. D. Miller, “CNS Myeloid DCs Presenting Endogenous Myelin Peptides ‘preferentially’ Polarize CD4+ T(H)-17 Cells in Relapsing EAE,” Nature Immunology, Vol. 8, No. 2, 2007, pp. 172-180. doi:10.1038/ni1430
[113] T. Olsson, “Multiple Sclerosis:Cerebrospinal Fluid,” Annals of Neurology, Vol. 36, 1994, pp. S100-S102. doi:10.1002/ana.410360723
[114] T. L. Sorensen, M. Tani, J. Jensen, V. Pierce, C. Lucchinetti, V. A. Folcik, S. Qin, J. Rottman, F. Sellebjerg, R. M. Strieter, J. L. Frederiksen and R. M. Ransohoff, “Expression of Specific Chemokines and Chemokine Receptors in the Central Nervous System of Multiple Sclerosis Patients,” The Journal of Clinical Investigation, Vol. 103, No. 6, 1999, pp. 807-815. doi:10.1172/JCI5150
[115] H. L. Weiner, “Multiple Sclerosis Is an Inflammatory T- Cell-Mediated Autoimmune Disease,” Archives of Neurology, Vol. 61, No. 10, 2004, pp. 1613-1615. doi:10.1001/archneur.61.10.1613
[116] C. Lucchinetti, W. Bruck, J. Parisi, B. Scheithauer, M. Rodriguez and H. Lassmann, “Heterogeneity of Multiple Sclerosis Lesions: Implications for the Pathogenesis of Demyelination,” Annals of Neurology, Vol. 47, No. 6, 2000, pp. 707-717. doi:10.1002/1531-8249(200006)47:6<707::AID-ANA3>3.0.CO;2-Q
[117] J. K. Olson, T. N. Eagar and S. D. Miller, “Functional Activation of Myelin-Specific T Cells by Virus-Induced Molecular Mimicry,” The Journal of Immunology, Vol. 169, No. 5, 2002, pp. 2719-2726.
[118] J. D. Kriesel, M. R. Hobbs, B. B. Jones, B. Milash, R. M. Nagra and K. F. Fischer, “Deep Sequencing for the Detection of Virus-Like Sequences in the Brains of Patients with Multiple Sclerosis: Detection of GBV-C in Human Brain,” PLoS One, Vol. 7, No. 3, 2012, Article ID: e31886. doi:10.1371/journal.pone.0031886
[119] M. H. Barnett and J. W. Prineas, “Relapsing and Remitting Multiple Sclerosis: Pathology of the Newly Forming Lesion,” Annals of Neurology, Vol. 55, No. 4, 2004, pp. 458-468. doi:10.1002/ana.20016
[120] M. H. Barnett and I. Sutton, “The Pathology of Multiple Sclerosis: A Paradigm Shift,” Current Opinion in Neu-rology, Vol. 19, No. 3, 2006, pp. 242-247. doi:10.1097/01.wco.0000227032.47458.cb
[121] G. Locatelli, S. Wortge, T. Buch, B. Ingold, F. Frommer, B. Sobottka, M. Kruger, K. Karram, C. Buhlmann, I. Bechmann, F. L. Heppner, A. Waisman and B. Becher, “Primary Oligodendrocyte Death Does Not Elicit Anti-CNS Immunity,” Nature Neuroscience, Vol. 15, No. 4, 2012, pp. 543-550. doi:10.1038/nn.3062
[122] H. B. Pohl, C. Porcheri, T. Mueggler, L. C. Bachmann, G. Martino, D. Riethmacher, R. J. Franklin, M. Rudin and U. Suter, “Genetically Induced Adult Oligodendrocyte Cell Death Is Associated with Poor Myelin Clearance, Reduced Remyelination, and Axonal Damage,” The Journal of Neuroscience, Vol. 31, No. 3, 2011, pp. 1069-1080. doi:10.1523/JNEUROSCI.5035-10.2011
[123] T. Henics and D. N. Wheatley, “Cytoplasmic Vacuolation, Adaptation and Cell Death: A View on New Perspectives and Features,” Biology of the Cell, Vol. 91, No. 7, 1999, pp. 485-498. doi:10.1016/S0248-4900(00)88205-2
[124] C. M. Poser, “The Role of Trauma in the Pathogenesis of Multiple Sclerosis: A Review,” Clinical Neurology and Neurosurgery, Vol. 96, No. 2, 1994, pp. 103-110. doi:10.1016/0303-8467(94)90042-6
[125] A. G. Kermode, A. J. Thompson, P. Tofts, D. G. MacManus, B. E. Kendall, D. P. Kingsley, I. F. Moseley, P. Rudge and W. I. McDonald, “Breakdown of the Blood-Brain Barrier Precedes Symptoms and Other MRI Signs of New Lesions in Multiple Sclerosis. Pathogenetic and Clinical Implications,” Brain, Vol. 113, No. 5, 1990, pp. 1477-1489. doi:10.1093/brain/113.5.1477
[126] S. Hisahara, T. Araki, F. Sugiyama, K. Yagami, M. Suzuki, K. Abe, K. Yamamura, J. Miyazaki, T. Momoi, T. Saruta, C. C. Bernard, H. Okano and M. Miura, “Targeted Expression of Baculovirus p35 Caspase Inhibitor in Oligodendrocytes Protects Mice against Autoimmune-Mediated Demyelination,” The EMBO Journal, Vol. 19, No. 3, 2000, pp. 341-348. doi:10.1093/emboj/19.3.341
[127] M. L. Albert, S. F. Pearce, L. M. Francisco, B. Sauter, P. Roy, R. L. Silverstein and N. Bhardwaj, “Immature Dendritic Cells Phagocytose Apoptotic Cells via Alphavbeta5 and CD36, and Cross-Present Antigens to Cytotoxic T Lymphocytes,” The Journal of Experimental Medicine, Vol. 188, No. 7, 1998, pp. 1359-1368. doi:10.1084/jem.188.7.1359
[128] M. L. Albert, B. Sauter and N. Bhardwaj, “Dendritic Cells Acquire Antigen from Apoptotic Cells and Induce Class I-Restricted CTLs,” Nature, Vol. 392, No. 6671, 1998, pp. 86-89. doi:10.1038/32183
[129] N. E. Blachere, R. B. Darnell and M. L. Albert, “Apoptotic Cells Deliver Processed Antigen to Dendritic Cells for Cross-Presentation,” PLoS Biology, Vol. 3, No. 6, 2005, pp. e185. doi:10.1371/journal.pbio.0030185
[130] F. Meloni, D. Accapezzato, C. Agresti, F. Aloisi, G. Ristori, M. Salvetti, R. Furlan, G. Martino, V. Barnaba and M. Paroli, “Dendritic Cells Loaded with Apoptotic Oligodendrocytes as a Source of Myelin T-Cell Epitopes in Multiple Sclerosis,” Clinical Immunology, Vol. 129, No. 2, 2008, pp. 286-294. doi:10.1016/j.clim.2008.07.017
[131] H. Kono and K. L. Rock, “How Dying Cells Alert the Immune System to Danger,” Nature Reviews Immunology, Vol. 8, No. 4, 2008, pp. 279-289. doi:10.1038/nri2215
[132] M. P. Mycko, H. Cwiklinska, J. Szymanski, B. Szymanska, G. Kudla, L. Kilianek, A. Odyniec, C. F. Brosnan and K. W. Selmaj, “Inducible Heat Shock Protein 70 Promotes Myelin Autoantigen Presentation by the HLA Class II,” The Journal of Immunology, Vol. 172, No. 1, 2004, pp. 202-213.
[133] B. Ravishankar, H. Liu, R. Shinde, P. Chandler, B. Baban, M. Tanaka, D. H. Munn, A. L. Mellor, M. C. Karlsson and T. L. McGaha, “Tolerance to Apoptotic Cells Is Regulated by Indoleamine 2,3-Dioxygenase,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, No. 10, 2012, pp. 3909-3914. doi:10.1073/pnas.1117736109
[134] Y. Wang, M. A. Lawson, K. W. Kelley and R. Dantzer, “Primary Murine Microglia Are Resistant to Nitric Oxide Inhibition of Indoleamine 2,3-Dioxygenase,” Brain, Behavior, and Immunity, Vol. 24, No. 8, 2010, pp. 1249-1253. doi:10.1016/j.bbi.2010.04.015
[135] A. Andersson, R. Covacu, D. Sunnemark, A. I. Danilov, A. Dal Bianco, M. Khademi, E. Wallstrom, A. Lobell, L. Brundin, H. Lassmann and R. A. Harris, “Pivotal Advance: HMGB1 Expression in Active Lesions of Human and Experimental Multiple Sclerosis,” Journal of Leukocyte Biology, Vol. 84, No. 5, 2008, pp. 1248-1255. doi:10.1189/jlb.1207844
[136] R. A. Williamson, M. P. Burgoon, G. P. Owens, O. Ghausi, E. Leclerc, L. Firme, S. Carlson, J. Corboy, P. W. Parren, P. P. Sanna, D. H. Gilden and D. R. Burton, “Anti-DNA Antibodies Are a Major Component of the Intrathecal B Cell Response in Multiple Sclerosis,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 4, 2001, pp. 1793-1798. doi:10.1073/pnas.031567598
[137] L. K. Peterson, T. Masaki, S. R. Wheelwright, I. Tsunoda and R. S. Fujinami, “Cross-Reactive Myelin Antibody Induces Renal Pathology,” Autoimmunity, Vol. 41, No. 7, 2008, pp. 526-536. doi:10.1080/08916930802128680
[138] L. K. Peterson, I. Tsunoda, T. Masaki and R. S. Fujinami, “Polyreactive Myelin Oligodendrocyte Glycoprotein Antibodies: Implications for Systemic Autoimmunity in Progressive Experimental Autoimmune Encephalomyelitis,” Journal of Neuroimmunology, Vol. 183, No. 1-2, 2007, pp. 69-80. doi:10.1016/j.jneuroim.2006.11.024
[139] M. Cieslak, F. Kukulski and M. Komoszynski, “Emerging Role of Extracellular Nucleotides and Adenosine in Multiple Sclerosis,” Purinergic Signalling, Vol. 7, No. 4, 2011, pp. 393-402. doi:10.1007/s11302-011-9250-y
[140] G. Birnbaum, L. Kotilinek, P. Schlievert, H. B. Clark, J. Trotter, E. Horvath, E. Gao, M. Cox and P. E. Braun, “Heat Shock Proteins and Experimental Autoimmune Encephalomyelitis (EAE): I. Immunization with a Peptide of the Myelin Protein 2’,3’ Cyclic Nucleotide 3’ Phosphodiesterase That Is Cross-Reactive with a Heat Shock Protein Alters the Course of EAE,” Journal of Neuroscience Research, Vol. 44, No. 4, 1996, pp. 381-396. doi:10.1002/(SICI)1097-4547(19960515)44:4<381::AID-JNR10>3.0.CO;2-5
[141] M. Rickmann and J. R. Wolff, “S100 Immunoreactivity in a Subpopulation of Oligodendrocytes and Ranvier’S Nodes of Adult Rat Brain,” Neuroscience Letters, Vol. 186, No. 1, 1995, pp. 13-16. doi:10.1016/0304-3940(95)11269-3
[142] R. A. Sobel and M. E. Mitchell, “Fibronectin in Multiple Sclerosis Lesions,” The American Journal of Pathology, Vol. 135, No. 1, 1989, pp. 161-168.
[143] R. A. Sobel, E. E. Schneeberger and R. B. Colvin, “The Immunopathology of Acute Experimental Allergic Encephalomyelitis. V. A Light Microscopic and Ultrastructural Immunohistochemical Analysis of Fibronectin and Fibrinogen,” The American Journal of Pathology, Vol. 131, No. 3, 1988, pp. 547-558.
[144] P. Y. Paterson, C. S. Koh and H. C. Kwaan, “Role of the Clotting System in the Pathogenesis of Neuroimmunologic Disease,” Federation Proceedings, Vol. 46, No. 1, 1987, pp. 91-96.
[145] Z. Siskova, W. Baron, H. de Vries and D. Hoekstra, “Fibronectin Impedes ‘Myelin’ Sheet-Directed Flow in Oligodendrocytes: A Role for a Beta 1 Integrin-Mediated PKC Signaling Pathway in Vesicular Trafficking,” Molecular and Cellular Neuroscience, Vol. 33, No. 2, 2006, pp. 150-159. doi:10.1016/j.mcn.2006.07.001
[146] S. A. Back, T. M. Tuohy, H. Chen, N. Wallingford, A. Craig, J. Struve, N. L. Luo, F. Banine, Y. Liu, A. Chang, B. D. Trapp, B. F. Bebo, Jr., M. S. Rao and L. S. Sherman, “Hyaluronan Accumulates in Demyelinated Lesions and Inhibits Oligodendrocyte Progenitor Maturation,” Nature Medicine, Vol. 11, No. 9, 2005, pp. 966-972.
[147] Z. Fabry, H. A. Schreiber, M. G. Harris and M. Sandor, “Sensing the Microenvironment of the Central Nervous System: Immune Cells in the Central Nervous System and Their Pharmacological Manipulation,” Current Opinion in Pharmacology, Vol. 8, No. 4, 2008, pp. 496-507. doi:10.1016/j.coph.2008.07.009
[148] J. A. Sloane, C. Batt, Y. Ma, Z. M. Harris, B. Trapp and T. Vartanian, “Hyaluronan Blocks Oligodendrocyte Progenitor Maturation and Remyelination through TLR2,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 25, 2010, pp. 11555-11560. doi:10.1073/pnas.1006496107
[149] A. M. de Mestre, M. A. Staykova, J. R. Hornby, D. O. Willenborg and M. D. Hulett, “Expression of the Heparan Sulfate-Degrading Enzyme Heparanase Is Induced in Infiltrating CD4+ T Cells in Experimental Autoimmune Encephalomyelitis and Regulated at the Level of Transcription by Early Growth Response Gene 1,” Journal of Leukocyte Biology, Vol. 82, No. 5, 2007, pp. 1289-1300. doi:10.1189/jlb.0507315
[150] J. van Horssen, L. Bo, C. M. Vos, I. Virtanen and H. E. de Vries, “Basement Membrane Proteins in Multiple Sclerosis-Associated Inflammatory Cuffs: Potential Role in Influx and Transport of Leukocytes,” Journal of Neuropathology & Experimental Neurology, Vol. 64, No. 8, 2005, pp. 722-729. doi:10.1097/01.jnen.0000173894.09553.13
[151] S. Miyake, T. Sakurai, K. Okumura and H. Yagita, “Identification of Collagen and Laminin Receptor Integrins on Murine T Lymphocytes,” European Journal of Immunology, Vol. 24, No. 9, 1994, pp. 2000-2005. doi:10.1002/eji.1830240910
[152] J. T. Maikos, R. A. Elias and D. I. Shreiber, “Mechanical Properties of Dura Mater from the Rat Brain and Spinal Cord,” Journal of Neurotrauma, Vol. 25, No. 1, 2008, pp. 38-51. doi:10.1089/neu.2007.0348
[153] S. Chandler, J. Cossins, J. Lury and G. Wells, “Macrophage Metalloelastase Degrades Matrix and Myelin Proteins and Processes a Tumour Necrosis Factor-Alpha Fusion Protein,” Biochemical and Biophysical Research Communications, Vol. 228, No. 2, 1996, pp. 421-429. doi:10.1006/bbrc.1996.1677
[154] R. Debret, F. Antonicelli, A. Theill, W. Hornebeck, P. Bernard, M. Guenounou and R. Le Naour, “Elastin-Derived Peptides Induce a T-Helper Type 1 Polarization of Human Blood Lymphocytes,” Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 25, No. 7, 2005, pp. 1353-1358. doi:10.1161/01.ATV.0000168412.50855.9f
[155] M. Stancic, J. van Horssen, V. L. Thijssen, H. J. Gabius, P. van der Valk, D. Hoekstra and W. Baron, “Increased Expression of Distinct Galectins in Multiple Sclerosis Lesions,” Neuropathology and Applied Neurobiology, Vol. 37, No. 6, 2011, pp. 654-671. doi:10.1111/j.1365-2990.2011.01184.x
[156] J. M. Ilarregui, D. O. Croci, G. A. Bianco, M. A. Toscano, M. Salatino, M. E. Vermeulen, J. R. Geffner and G. A. Rabinovich, “Tolerogenic Signals Delivered by Dendritic Cells to T Cells through a Galectin-1-Driven Immunoregulatory Circuit Involving Interleukin 27 and Interleukin 10,” Nature Immunology, Vol. 10, No. 9, 2009, pp. 981-991. doi:10.1038/ni.1772
[157] J. Wang, Z. H. Lu, H. J. Gabius, C. Rohowsky-Kochan, R. W. Ledeen and G. Wu, “Cross-Linking of GM1 Ganglioside by Galectin-1 Mediates Regulatory T Cell Activity Involving TRPC5 Channel Activation: Possible Role in Suppressing Experimental Autoimmune Encephalomyelitis,” The Journal of Immunology, Vol. 182, No. 7, 2009, pp. 4036-4045. doi:10.4049/jimmunol.0802981
[158] A. Grigorian and M. Demetriou, “Mgat5 Deficiency in T Cells and Experimental Autoimmune Encephalomyelitis,” ISRN Neurology, Vol. 2011, 2011, pp. 374314. doi:10.5402/2011/374314
[159] M. Demetriou, M. Granovsky, S. Quaggin and J. W. Dennis, “Negative Regulation of T-Cell Activation and Autoimmunity by Mgat5 N-Glycosylation,” Nature, Vol. 409, No. 6821, 2001, pp. 733-739. doi:10.1038/35055582
[160] S. U. Lee, A. Grigorian, J. Pawling, I. J. Chen, G. Gao, T. Mozaffar, C. McKerlie and M. Demetriou, “N-Glycan Processing Deficiency Promotes Spontaneous Inflammatory Demyelination and Neurodegeneration,” The Journal of Biological Chemistry, Vol. 282, No. 46, 2007, pp. 33725-33734. doi:10.1074/jbc.M704839200
[161] K. Liu and M. C. Nussenzweig, “Origin and Development of Dendritic Cells,” Immunological Reviews, Vol. 234, No. 1, 2010, pp. 45-54. doi:10.1111/j.0105-2896.2009.00879.x
[162] M. Colonna, G. Trinchieri and Y. J. Liu, “Plasmacytoid Dendritic Cells in Immunity,” Nature Immunology, Vol. 5, No. 12, 2004, pp. 1219-1226. doi:10.1038/ni1141
[163] B. D. Clarkson, E. Heninger, M. G. Harris, J. Lee, M. Sandor and Z. Fabry, “Innate-Adaptive Crosstalk: How Dendritic Cells Shape Immune Responses in the CNS,” Advances in Experimental Medicine and Biology, Vol. 946, 2012, pp. 309-333. doi:10.1007/978-1-4614-0106-3_18
[164] D. Dissanayake, H. Hall, N. Berg-Brown, A. R. Elford, S. R. Hamilton, K. Murakami, L. S. Deluca, J. L. Gommerman and P. S. Ohashi, “Nuclear Factor-Kappab1 Controls the Functional Maturation of Dendritic Cells and Prevents the Activation of Autoreactive T Cells,” Nature Medicine, Vol. 17, No. 12, 2011, pp. 1663-1667. doi:10.1038/nm.2556
[165] A. L. Zozulya, S. Ortler, J. Lee, C. Weidenfeller, M. Sandor, H. Wiendl and Z. Fabry, “Intracerebral Dendritic Cells Critically Modulate Encephalitogenic versus Regulatory Immune Responses in the CNS,” The Journal of Neuroscience, Vol. 29, No. 1, 2009, pp. 140-152. doi:10.1523/JNEUROSCI.2199-08.2009
[166] P. Deshpande, I. L. King and B. M. Segal, “Cutting Edge: CNS CD11c+ Cells from Mice with Encephalomyelitis Polarize Th17 Cells and Support CD25+ CD4+ T Cell-Mediated Immunosuppression, Suggesting Dual Roles in the Disease Process,” The Journal of Immunology, Vol. 178, No. 11, 2007, pp. 6695-6699.
[167] M. N. Alonso, M. T. Wong, A. L. Zhang, D. Winer, M. M. Suhoski, L. L. Tolentino, J. Gaitan, M. G. Davidson, T. H. Kung, D. M. Galel, K. C. Nadeau, J. Kim, P. J. Utz, K. Soderstrom and E. G. Engleman, “T(H)1, T(H)2, and T(H)17 Cells Instruct Monocytes to Differentiate into Specialized Dendritic Cell Subsets,” Blood, Vol. 118, No. 12, 2011, pp. 3311-3320. doi:10.1182/blood-2011-03-341065
[168] M. El-Behi, B. Ciric, H. Dai, Y. Yan, M. Cullimore, F. Safavi, G. X. Zhang, B. N. Dittel and A. Rostami, “The Encephalitogenicity of T(H)17 Cells Is Dependent on IL-1- and IL-23-Induced Production of the Cytokine GM-CSF,” Nature Immunology, Vol. 12, No. 6, 2011, pp. 568-575. doi:10.1038/ni.2031
[169] K. Poppensieker, D. M. Otte, B. Schurmann, A. Limmer, P. Dresing, E. Drews, B. Schumak, L. Klotz, J. Raasch, A. Mildner, A. Waisman, S. Scheu, P. Knolle, I. Forster, M. Prinz, W. Maier, A. Zimmer and J. Alferink, “CC Chemokine Receptor 4 Is Required for Experimental Autoimmune Encephalomyelitis by Regulating GM-CSF and IL-23 Production in Dendritic Cells,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, No. 10, 2012, pp. 3897-3902. doi:10.1073/pnas.1114153109
[170] R. A. Maldonado and U. H. von Andrian, “How Tolerogenic Dendritic Cells induce Regulatory T Cells,” Advances in Immunology, Vol. 108, 2010, pp. 111-165. doi:10.1016/B978-0-12-380995-7.00004-5
[171] S. M. Opal and V. A. DePalo, “Anti-Inflammatory Cytokines,” Chest, Vol. 117, No. 4, 2000, pp. 1162-1172. doi:10.1378/chest.117.4.1162
[172] Y. Laouar, T. Town, D. Jeng, E. Tran, Y. Wan, V. K. Kuchroo and R. A. Flavell, “TGF-Beta Signaling in Dendritic Cells Is a Prerequisite for the Control of Autoimmune Encephalomyelitis,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No. 31, 2008, pp. 10865-10870. doi:10.1073/pnas.0805058105
[173] M. Delgado, E. Gonzalez-Rey and D. Ganea, “The Neuropeptide Vasoactive Intestinal Peptide Generates Tolerogenic Dendritic Cells,” The Journal of Immunology, Vol. 175, No. 11, 2005, pp. 7311-7324.
[174] M. G. Toscano, M. Delgado, W. Kong, F. Martin, M. Skarica and D. Ganea, “Dendritic Cells Transduced with Lentiviral Vectors Expressing VIP Differentiate into VIP-Secreting Tolerogenic-Like DCs,” Molecular Therapy, Vol. 18, No. 5, 2010, pp. 1035-1045. doi:10.1038/mt.2009.293
[175] S. L. Bailey, P. A. Carpentier, E. J. McMahon, W. S. Begolka and S. D. Miller, “Innate and Adaptive Immune Responses of the Central Nervous System,” Critical Reviews in Immunology, Vol. 26, No. 2, 2006, pp. 149-188.
[176] S. L. Bailey-Bucktrout, S. C. Caulkins, G. Goings, J. A. Fischer, A. Dzionek and S. D. Miller, “Cutting Edge: Central Nervous System Plasmacytoid Dendritic Cells Regulate the Severity of Relapsing Experimental Auto-immune Encephalomyelitis,” The Journal of Immunology, Vol. 180, No. 10, 2008, pp. 6457-6461.
[177] M. Irla, N. Kupfer, T. Suter, R. Lissilaa, M. Benkhoucha, J. Skupsky, P. H. Lalive, A. Fontana, W. Reith and S. Hugues, “MHC Class II-Restricted Antigen Presentation by Plasmacytoid Dendritic Cells Inhibits T Cell-Mediated Autoimmunity,” The Journal of Experimental Medicine, Vol. 207, No. 9, 2010, pp. 1891-1905. doi:10.1084/jem.20092627
[178] Y. Yan, G. X. Zhang, B. Gran, F. Fallarino, S. Yu, H. Li, M. L. Cullimore, A. Rostami and H. Xu, “IDO Upregulates Regulatory T Cells via Tryptophan Catabolite and Suppresses Encephalitogenic T Cell Responses in Experimental Autoimmune Encephalomyelitis,” The Journal of Immunology, Vol. 185, No. 10, 2010, pp. 5953-5961. doi:10.4049/jimmunol.1001628

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.