Transgenic Vegetable Breeding for Nutritional Quality and Health Benefits


Vegetables are essential for well-balanced diets. About 3 billion people in the world are malnourished due to imbalanced diets. Vegetables can contribute to the prevention of malnutrition disorders. Genetic engineering enables vegetable breeders to incorporate desired transgenes into elite cultivars, thereby improving their value considerably. It further offers unique opportunities for improving nutritional quality and bringing other health benefits. Many vegetable crops have been genetically modified to improve traits such as higher nutritional status or better flavour, and to reduce bitterness or anti-nutritional factors. Transgenic vegetables can be also used for vaccine delivery. Consumers could benefit further from eating more nutritious transgenic vegetables, e.g. an increase of crop carotenoids by metabolic sink manipulation through genetic engineering appears feasible in some vegetables. Genetically engineering carrots containing increase Ca levels may boost Ca uptake, thereby reducing the incidence of Ca deficiencies such as osteoporosis. Fortified transgenic lettuce with zinc will overcome the deficiency of this micronutrient that severely impairs organ function. Folates deficiency, which is regarded as a global health problem, can also be overcomed with transgenic tomatoes with folate levels that provide a complete adult daily requirement. Transgenic lettuce with improved tocopherol and resveratrol composition may prevent coronary disease and arteriosclerosis and can contribute to cancer chemopreventative activity. Food safety and health benefits can also be enhanced through transgenic approaches, e.g. rural African resource-poor consumers will benefit eating cyanide-free cultivars of cassava. Biotechnology-derived vegetable crops will succed if clear advantages and safety are demonstrated to both growers and consumers.

Share and Cite:

J. Dias and R. Ortiz, "Transgenic Vegetable Breeding for Nutritional Quality and Health Benefits," Food and Nutrition Sciences, Vol. 3 No. 9, 2012, pp. 1209-1219. doi: 10.4236/fns.2012.39159.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. Craig and L. Beck, “Phytochemicals: Health Protective Effects,” Canadian Journal of Dietetic Practice and Research, Vol. 60, 1999, pp. 78-84.
[2] M. J. Wargovich, “Anticancer Properties of Fruits and Vegetables,” HortScience, Vol. 35, 2000, pp. 573-575.
[3] J. S. Dias and E. Ryder, “World Vegetable Industry: Production, Breeding, Trends,” Horticulture Review, Vol. 38, 2011, pp. 299-356.
[4] S. Southon, “Increased Fruit and Vegetable Consumption within the EU: Potential Health Benefits,” Food Research International, Vol. 33, 2000, pp. 211-217. doi:10.1016/S0963-9969(00)00036-3
[5] E. Herrera, R. Jimenez, O. I. Aruoma, S. Hercberg, I. Sanchez-Garcia and C. Fraga, “Aspects of Antioxidant Foods and Supplements in Health and Disease,” Nutrition Reviews, Vol. 67, 2009, pp. S140-S144. doi:10.1111/j.1753-4887.2009.00177.x
[6] W. Pfeiffer and B. McClafferty, “HarvestPlus: Breeding Crops for Better Nutrition,” Crop Science, Vol. 57, 2007, pp. s88-s105.
[7] J. D. H. Keatinge, F. Waliyar, R. H. Jammadass, A. Moustafa, M. Andrade, P. Drechsel, J. d’A. Hughes, P. Kardivel and K. Luther, “Re-Learning Old Lessons for the Future of Food: By Bread Alone no Longer—Diversifying Diets with Fruit and Vegetables,” Crop Science, Vol. 50, 2010, pp. 51-62.
[8] J. S. Dias, “World Importance, Marketing and Trading of Vegetables,” Acta Horticulturae, Vol. 921, 2011, pp. 153169.
[9] WHO (World Health Organization), “Diet, Nutrition and the Prevention of Chronic Diseases,” Report of a Joint WHO/FAO Expert Consultation, WHO Technical Report Ser. 916 World Health Organization, Geneva, 2003.
[10] Hellen Keller International, “Homestead Food Production Model Contributes to Improved Household Food Security, Nutrition and Female Empowerment—Experience from Scaling-Up Programs in Asia (Bangladesh, Cambodia, Nepal and Philippines),” Nutrition Bulletin, Vol. 8, 2010, pp. 1-8.
[11] S. Rao, C. S. Yajnik, A. Kanade, D. H. D. Fall, B. M. Margetts and A. A. Jackson, “Intake of MicronutrientRich Foods in Rural Indian Mothers Is Associated with the Size of Their Babies at Birth: Pune Maternal Nutrition Study,” Journal of Nutrition, Vol. 131, 2001, pp. 1217-1224.
[12] M. Newell-McGloughlin, “Nutritionally Improved Agricultural Crops,” Plant Physiology, Vol. 147, 2008, pp. 939-953. doi:10.1104/pp.108.121947
[13] J. S. Dias and R. Ortiz, “Transgenic Vegetable Crops: Progress, Potentials and Prospects,” Plant Breeding Reviews, Vol. 35, 2012, pp. 151-246.
[14] WFP (World Food Programme), “Annual Report,” WFPUN, Washington, 2007.
[15] UNICEF, “Vitamin and Mineral Deficiency. A Global Progress Report,” UNICEF, 2010.
[16] X. Ye, S. Al-Babili, A. Kl?ti, J. Zhang, P. Lucca, P. Beyer and I. Potrykus, “Engineering the Provitamin A (Beta-Carotene) Biosynthetic Pathway into (CarotenoidFree) Rice Endosperm,” Science, Vol. 287, 2000, pp. 303305. doi:10.1126/science.287.5451.303
[17] M. Enserink, “Tough Lessons from Golden Rice,” Science, Vol. 320, 2008, pp. 468-471. doi:10.1126/science.320.5875.468
[18] D. DellaPenna and B. Pogson, “Vitamin Synthesis in Plants: Tocopherols and Carotenoids,” Annual Review of Plant Biology, Vol. 57, 2006, pp. 711-738. doi:10.1146/annurev.arplant.56.032604.144301
[19] G. Diretto, R. Tavazza, R. Welsch, D. Pizzichini, F. Mourgues, V. Papacchioli, P. Beyer and G. Giuliano, “Metabolic Engineering of Potato Tuber Carotenoids through Tuber-Specific Silencing of Lycopene Epsilon Cyclase,” BMC Plant Biology, Vol. 6, 2006, p. 13. doi:10.1186/1471-2229-6-13
[20] J. C. Cervantes-Flores, B. Sosinski, K. V. Pecota, R. O. M. Mwanga, G. L. Catignani, V. D. Truong, R. H. Watkins, M. R. Ulmer and G. C. Yencho, “Identification of Quantitative Trait Loci for Dry-Matter, Starch, and Beta Carotene Content in Sweet Potato,” Molecular Breeding, Vol. 28, 2010, pp. 201-216. doi:10.1007/s11032-010-9474-5
[21] S. Romer, P. D. Fraser, J. W. Kiano, C. A. Shipton, N. Misawa, W. Schuch and P. M. Bramley, “Elevation of the Provitamin A Content of Transgenic Tomato Plants,” Nature Biotechnology, Vol. 18, 2000, pp. 666-669. doi:10.1038/76523
[22] P. D. Fraser, S. Romer, C. A. Shipton, P. B. Mills, K. W. Kiano, N. Misawa, R. G. Drake, W. Schuch and P. M. Bramley, “Evaluation of Transgenic Tomato Plants Expressing an Additional Phytoene Synthase in a Fruit Specific Manner,” Proceedings of the National Academy of Science, Vol. 99, 2002, pp. 1092-1097. doi:10.1073/pnas.241374598
[23] C. Rosati, R. Aquilani, S. Dharmapur, P. Pallara, C. Marusic, R. Tavazza, F. Bouvier, B. Camara and G. Giuliano, “Metabolic Engineering of Beta-Carotene and Lycopene Content in Tomato Fruit,” Plant Journal, Vol. 24, 2000, pp. 413-419. doi:10.1046/j.1365-313x.2000.00880.x
[24] S. Lu, J. van Eck, X. Zhou, A. B. Lopez, D. M. O’Halloran, K. M. Cosman, B. J. Conlin, D. J. Paolillo, D. F. Garvin, J. Vrebalov, L. V. Kochian, H. Kupper, E. D. Earle, J. Cao and L. Li, “The Cauliflower Or Gene Encodes a DnaJ Cysteine-Rich Domain-Containing Protein that Mediates High Levels of β-Carotene Accumulation,” Plant Cell, Vol. 18, 2006, pp. 3594-3605. doi:10.1105/tpc.106.046417
[25] T. Wahlroos, P. Susi, A. Solovyev, Y. Dorokhov, S. Morozov, J. Atabekov and T. Korpela, “Increase of Histidine Content in Brassica rapa subsp. oleifera by OverExpression of Histidine-Rich Fusion Proteins,” Molecular Breeding, Vol. 14, 2004, pp. 455-462. doi:10.1007/s11032-004-0902-2
[26] E. A. Cho, C. A. Lee, Y. S. Kim, S. H. Baek, B. G. Reyes and S. J. Yun, “Expression of g-tocopherol methyltransferase Transgene Improves Tocopherol Composition in Lettuce (Lactuca sativa L.),” Molecules & Cells, Vol. 19, 2005, pp. 16-22.
[27] R. I. Diaz de la Garza, E. P. Quinlivan, S. M. J.. Klaus, G. J. C. Basset, J. F. Gregory and A. D. Hanson, “Folate Biofortification in Tomatoes by Engineering the Pteridine Branch of Folate Synthesis,” Proceedings of National Academy of Science, Vol. 101, 2004, pp. 13720-13725. doi:10.1073/pnas.0404208101
[28] R. I. Diaz de la Garza, J. F. Gregory and A. D. Hanson, “Folate Biofortification of Tomato Fruit,” Proceedings of National Academy of Science, Vol. 104, 2007, pp. 42184222. doi:10.1073/pnas.0700409104
[29] S. Park, C. K. Kim, L. M. Pike, R. H. Smith and K. D. Hirschi, “Increased Calcium in Carrots by Expression of an Arabidopsis H+/Ca2+ Transporter,” Molecular Breeding, Vol. 14, 2004, pp. 275-282. doi:10.1023/
[30] J. Morris, K. M. Hawthorne, T. Hotze, S. A. Abrams and K. D. Hirschi, “Nutritional Impact of Elevated Calcium Transport Activity in Carrots,” Proceedings of National Academy of Science, Vol. 105, 2008, pp. 1431-1435. doi:10.1073/pnas.0709005105
[31] X. Zuo, Y. Zhang, B. Wu, X. Chang and B. Ru, “Expression of the Mouse Metallothionein Mutant ββ-cDNA in the Lettuces (Lactuca sativa L.),” Chinese Science Bulletin, Vol. 47, 2002, pp. 558-562. doi:10.1360/02tb9128
[32] P. Thavarajah, D. Thavarajah and A. Vandenberg, “Low Phytic Acid Lentils (Lens culinaris L.): A Potential Solution for Increased Micronutrient Bioavailability,” Journal of Agricultural and Food Chemistry, Vol. 57, 2009, pp. 9044-9049. doi:10.1021/jf901636p
[33] M. Fileppi, I. Galasso, G. Tagliabue, M. G. Daminati, B. Campion, E. Doria and F. Sparvoli, “Characterisation of Structural Genes Involved in Phytic Acid Biosynthesis in Common Bean (Phaseolus vulgaris L.),” Molecular Breeding, Vol. 25, 2010, pp. 453-470. doi:10.1007/s11032-009-9344-1
[34] V. Raboy, “The ABCs of Low-Phytate Crops,” Nature Biotechnology, Vol. 25, 2007, pp. 874-875. doi:10.1038/nbt0807-874
[35] J. Shi, H. Wang, K. Schellin, B. Li, M. Faller, J. M. Stoop, R. B. Meeley, D. S. Ertl, J. P. Ranch and K. Glassman, “Embryo-Specific Silencing of a Transporter Reduces Phytic Acid Content of Maize and Soybean Seeds,” Nature Biotechnology, Vol. 25, 2007, pp. 930-937. doi:10.1038/nbt1322
[36] V. Raboy, “Approaches and Challenges to Engineering Seed Phytate and Total Phosphorus,” Plant Science, Vol. 177, 2009, pp. 281-296. doi:10.1016/j.plantsci.2009.06.012
[37] B. Campion, F. Sparvoli, E. Doria, G. Tagliabue, I. Galasso, M. Fileppi, R. Bollini and E. Nielsen, “Isolation and Characterisation of an LPA (Low Phytic Acid) Mutant in Common Bean (Phaseolus vulgaris L.),” Theoretical and Applied Genetics, Vol. 118, 2009, pp. 12111221. doi:10.1007/s00122-009-0975-8
[38] E. Schijlen, C. H. Ric de Vos, H. Jonker, H. van den Broeck, J. Molthoff, A. van Tunen, S. Martens and A. Bovy, “Pathway Engineering for Healthy Phytochemicals Leading to the Production of Novel Flavonoids in Tomato Fruit,” Plant Biotechnology Journal, Vol. 4, 2006, pp. 433-444. doi:10.1111/j.1467-7652.2006.00192.x
[39] S. Liu, Y. Hu, X. Wang, J. Zhong and Z. Lin, “High Content of Resveratrol in Lettuce Transformed with a Stilbene Synthase Gene of Partenocissus henryana,” Journal of Agricultural and Food Chemistry, Vol. 54, 2006, pp. 8082-8085. doi:10.1021/jf061462k
[40] P. A. C. Sparrow, P. J. Dale and J. A. Irwin, “The Use of Phenotypic Markers to Identify Brassica oleracea Genotypes for Routine High-Throughput Agrobacterium Mediated Transformation,” Plant Cell Reports, Vol. 23, 2004, pp. 64-70. doi:10.1007/s00299-004-0818-7
[41] R. H. Braun, S. C. Morrison, K. E. Schwinn, and M. C. Christey, “Agrobacterium mediated transformation of Brassica oleracea with the Lc locus,” Abstracts International Association for Plant Tissue Culture and Biotechnology, Beijing, 13-18 August 2006, p. 115.
[42] C. Stushnoff, L. J. Ducreux, R. D. Hancock, P. E. Hedley, D. G. Holm, G. J. McDougall, J. W. McNicol, J. Morris, W. L. Morris, J. A. Sungurtas, S. R. Verrall, T. Zuber and M. A. Taylor, “Flavonoid Profiling and Transcriptome Analysis Reveals New Gene-Metabolite Correlations in Tubers of Solanum tuberosum L.,” Journal of Experimental Botany, Vol. 61, 2010, pp. 1225-1238.
[43] N. Juge, R. F. Mithen and M. Traka, “Molecular Basis for Chemoprevention by Sulforaphane: A Comprehensive Review,” Cellular and Molecular Life Science, Vol. 64, 2007, pp. 1105-1127.
[44] S. Kumar and A. Andy, “Health Promoting Bioactive Phytochemicals from Brassica,” International Food Research Journal, Vol. 19, 2012, pp. 141-152.
[45] G. Sarikamis, J. Marquez, R. MacCormack, R. N. Bennett, J. Roberts and R. Mithen, “High Glucosinolate Broccoli: A Delivery System for Sulforaphane,” Molecular Breeding, Vol. 18, 2006, pp. 219-228.
[46] A. V. Gasper, A. Al-Janobi, J. A. Smith, J. R. Bacon, P. Fortun, C. Atherton, M. A Taylor, C. J. Hawkey, D. A. Barrett and R. F. Mithen, “Glutathione-S-Transferase M1 Polymorphism and Metabolism of Sulforaphane from Standard and High-Glucosinolate Broccoli,” American Journal of Clinical Nutrition, Vol. 82, 2005, pp. 1283-1291.
[47] E. Block, “Garlic and Other Alliums: The Lore and the Science,” RSC, Cambridge, 2010.
[48] P. Rose, M. Whiterman, P. K. Moore and Y. Z. Zhu, “Bioactive S-Alk(en)yl Cysteine Sulfoxide Metabolites in the Genus Allium: The Chemistry of Potential Therapeutic Agents,” Natural Product Reports, Vol. 22, 2005, pp. 351-368.
[49] W. M. Randle and J. E. Lancaster, “Sulphur Compounds in Alliums in Relation to Flavour Quality,” In: J. L. Brewster, Ed., Onions and Other Vegetable Alliums, CAB International, Wallingford, 2002, pp. 329-356.
[50] J. E. Lancaster and H. A. Collin, “Presence of Alliinase in Isolated Vacuoles and of Alkyl Cysteine Sulphoxides in the Cytoplasm of Bulbs of Onion (Allium cepa L.),” Plant Science Letters, Vol. 22, 1981, pp. 169-176.
[51] C. C. Eady, S. Davis, J. Farrant, J. Reader and F. Kenel, “Agrobacterium tumefaciens Mediated Transformation and Regeneration of Herbicide Resistant Onion (Allium cepa) Plants,” Annals of Applied Biology, Vol. 142, 2003, pp. 213-217.
[52] C. C. Eady, T. Kamoi, M. Kato, N. G. Porter, S. Davis, M. Shaw, A. Kamoi and S. Imai, “Silencing Onion Lachrymatory Factor Synthase Causes a Significant Change in the Sulfur Secondary Metabolite Profile,” Plant Physiology, Vol. 147, 2008, pp. 2096-2106.
[53] H. J. Sun, M. L. Cui, B. Ma and H. Ezura, “Functional Expression of the Taste Modifying Protein, Miraculin, in Transgenic Lettuce,” FEBS Letters, Vol. 580, 2006, pp. 620-626.
[54] G. Bartoszewski, A. Niedziela, M. Szwacka and K. Niemirowicz-Szczytt, “Modification of Tomato Taste in Transgenic Plants Carrying a Thaumatin Gene from Thaumatococcus daniellii Bent.,” Plant Breeding, Vol. 122, 2008, pp. 347-351.
[55] E. M. Hellwege, S. Czapla, A. Jahnke, L. Willmitzer and A. G. Heyer, “Transgenic Potato (Solanum tuberosum) Tubers Synthesize the Full Spectrum of Inulin Molecules Naturally Occurring in Globe Artichoke (Cynara scolymus) Roots,” Proceedings of National Academy of Science, Vol. 97, 2000, pp. 8699-8704.
[56] H. Q. Li, C. Sautter, I. Potrykus and J. Pounti-Kaerlas, “Genetic Transformation of Cassava (Manihot esculenta Crantz),” Nature Biotechnology, Vol. 14, 1996, pp. 736740.
[57] C. J. J. M. Raemakers, E. Sofiari, N. J. Taylor, G. G. Henshaw, E. Jacobsen and R. G. F. Visser, “Production of Transgenic Cassava Plants by Particle Bombardment Using Luciferase Activity as the Selection Marker,” Molecular Breeding, Vol. 2, 1996, pp. 339-349.
[58] C. Schopke, N. J. Taylor, R. Carcamo, N. K. Konan, P. Marmey, G. G. Henshaw, R. N. Beachy and C. M. Fauquet, “Regeneration of Transgenic Cassava Plants (Manihot esculenta Crantz) from Microbombarded Embryogenic Suspension Cultures,” Nature Biotechnology, Vol. 14, 1996, pp. 731-735.
[59] D. Siritunga and R. T. Sayre, “Generation of CyanogenFree Transgenic Cassava,” Planta, Vol. 217, 2003, pp. 367-373.
[60] D. Siritunga and R. T. Sayre, “Engineering Cyanogen Synthesis and Turnover in Cassava (Manihot esculenta),” Plant Molecular Biology, Vol. 56, 2004, pp. 661-669.
[61] D. Siritunga, D. Arias-Garzon, W. White and R. T. Sayre, “Over-Expression of Hydroxynitrile Lyase in Transgenic Cassava Roots Accelerates Cyanogenesis and Food Detoxification,” Plant Biotechnology Journal, Vol. 2, 2004, pp. 37-43.
[62] N. Gutierrez, C. M. Avila, M. T. Moreno and A. M. Torres, “Development of SCAR Markers Linked to zt-2, One of the Genes Controlling Absence of Tannins in Faba Bean,” Australian Journal of Agricultural Research, Vol. 59, 2008, pp. 62-68.
[63] P. A. Nakata, “Advances in Our Understanding of Calcium Oxalate Crystal Formation and Function in Plants,” Plant Science, Vol. 164, 2003, pp. 901-909.
[64] P. A. Nakata and M. M. McConn, “Calcium Oxalate Crystal Formation Is not Essential for Growth of Medicago truncatula,” Plant Physiology and Biochemistry, Vol. 41, 2003, pp. 325-329.
[65] W. H. R. Langridge, “Edible Vaccines,” Scientific American, 2000, pp. 66-71.
[66] D. W. Pascual, “Vaccines Are for Dinner,” Proceedings of National Academy of Science, Vol. 104, 2007, pp. 10757-10758.
[67] G. B. Sunil Kumar, T. R. Gananpathi and V. A. Bapat, “Production of Hepatitis B Surface Antigen in Recombinant Plant Systems,” Biotechnology Progress, Vol. 23, 2007, pp. 523-529.
[68] P. B. McGarvey, J. Hammond, M. M. Dienelt, D. C. Hooper, Z. F. Fu, B. Dietzschold, H. Koprowski and F. H. Michaels, “Expression of the Rabies Virus Glycoprotein in Transgenic Tomatoes,” Bio/Technology, Vol. 13, 1995, pp. 1484-1487.
[69] Y. Ma, J. Zhang, S. Q. Lin and N. S. Xia, “Genetic Engineering Vaccines Produced by Transgenic Plants,” Xiamen Daxue Xuebao, Vol. 40, 2001, pp. 71-77.
[70] H. F. Chen, M. H. Chang, B. L. Chiang and S. T. Jeng, “Oral Immunization of Mice Using Transgenic Tomato Fruit Expressing VP1 Protein from Enterovirus 71,” Vaccine, Vol. 24, 2006, pp. 2944-2951.
[71] G. Benner, G. Andrews, W. Byrne, S. Strachan, A. Sample and D. Heath, “Immune Response to Yersinia Outer Proteins and Other Yersinia pestis Antigens after Experimental Plague Infection in Mice,” Infection and Immunity, Vol. 67, 1999, pp. 1922-1928.
[72] M. L. Alvarez, H. L. Pinyerd, J. D. Crisantes, M. M. Rigano, J. Pinkhasov, M. Amanda, A. M. Walmsley, H. S. Masona and G. A. Cardineau, “Plant-Made Subunit Vaccine against Pneumonic and Bubonic Plague Is Orally Immunogenic in Mice,” Vaccine, Vol. 24, 2006, pp. 2477-2490.
[73] S. J. Kays and J. S. Dias, “Common Names of Commercially Cultivated Vegetables of the World in 15 Languages,” Economic Botany, Vol. 49, 1995, pp. 115-152.
[74] WHO (World Health Organization), 20 Preguntas Sobre Los Alimentos Modificados Genéticamente. WHO, Geneva, 2002.
[75] FAO, FAO Statement on Biotechnology. Food and Agriculture Organization of the United Nations, Rome, Italy, 2000.
[76] Royal Society of London, the US National Academy of Sciences, the Brazilian Academy of Sciences, the Chinese Academy of Sciences, the Indian National Science Academy, the Mexican Academy of Sciences and the Third World Academy of Sciences, Transgenic Plants and World Agriculture. National Academies Press, Washington DC, 2000.
[77] B. M. Chassy, “Food Safety Evaluation of Crops Produced through Biotechnology,” Journal of the American College of Nutrition, Vol. 21, 2002, pp. S166-S173.
[78] Society of Toxicology, “The Safety of Genetically Modified Foods Produced through Biotechnology,” Society of Toxicology, Virginia, 2002.
[79] British Medical Association, “Genetically Modified Foods and Health: A Second Interim Statement,” British Medical Association, London, 2004.
[80] Union of the German Academies of Science and Humanities, “Are there Health Hazards for the Consumers from Eating Genetically Modified Foods?” Interacademy Panel Initiative on Genetically Modified Organisms, Berlin, 2006.
[81] Federal Office of Consumer Protection and Food Safety (Germany) and Partners, “Long-Term Effects of Genetically Modified (GM) Crops on Health and the Environment (including Biodiversity): Prioritisation of Potential Risks and Delimitation of Uncertainties,” Federal Office of Consumer Protection of Food Safety, Berlin, 2009.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.