Thermal Sprayed CNT Reinforced Nanocomposite Coatings – A Review


This review is done essentially to study results in the field of synthesis and characterization of Carbon Nanotubes (CNT’s) reinforced nanocomposite coatings using thermal sprayed coatings. CNT reinforced nanocomposite coatings produced by thermal spray process are being developed for a wide variety of applications, e.g. aerospace, automotive and sports equipment industries. It is anticipated that, if properly deposited, nanocomposite ceramic coatings could also provide improved properties like wear resistance and thermal barrier coatings. These results clearly demonstrate that the significant improvement in coating performance can be achieved by utilizing proper thermal sprayed nanocomposite coatings. Thermal sprayed nanocomposite coatings shows improvement of resistance to wear, erosion, corrosion and mechanical properties. The purpose of this paper is to review CNT reinforced nanocomposite coatings using thermal spray by various researchers.

Share and Cite:

M. Singla, H. Singh and V. Chawla, "Thermal Sprayed CNT Reinforced Nanocomposite Coatings – A Review," Journal of Minerals and Materials Characterization and Engineering, Vol. 10 No. 8, 2011, pp. 717-726. doi: 10.4236/jmmce.2011.108056.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Erja Turunen, Tommi Varis, Tom E. Gustafsson, Jari Keskinen, Teppo Falt, Simo- Pekka Hannula, Surface Coatings & Technology, Vol. [200], issue 16-17, (2006), 4987-4994.
[2] Chuanxian Ding, Huang Chen, Xuanyong Liu, Yi Zeng, Thermal Spray 2003: Advancing the science & applying the technology, (Ed.) C. Moreau and B. Marple, Published by ASM International, Materials Park, Ohio, USA, (2003),455-458.
[3] V. Chawla, B. S. Sidhu, D. Puri, S. Prakash, Journal of Australian Ceramic Society, Vol. 44[2], 2008, 56-62.
[4] A. G. Mamalis, L.O.G. Vogtl?nder, A. Markopoulos, Precision Eng. 28 (2004) 16–30.
[5] M. Baxendale, J. Mater. Sci.: Mater. Electron. 14 (2003) 657–659.
[6] E. T. Thostenson, Z. Ren, T.W. Chou, Composite Science and Technology 61 (2001) 1899–1912.
[7] A. K. Lau, D. Hui, Composites Part B: Eng. 33 (2002) 263–277.
[8] Ph. Mauron, Ch. Emmenegger, A. Zuttel, Ch. Nutzenadel, P. Sudan, L. Schlapbach, Carbon 40 (2002) 1339–1344.
[9] X. F. Zhang, X.B. Zhang, G.V. Tendeloo, S. Amelinckx, M. Beeck, J.V. Landuyt, Journal of Crystal Growth 130 (1993) 368–382.
[10] R. B. Pipes, P. Hubert, Composite Science and Technology 62 (2002) 419–428.
[11] J. Salvetat-Delmotte, A. Rubio, Carbon 40 (2002) 1729–1734.
[12] E. Saether, S.J. Frankland, R.B. Pipes, Composite Science and Technology 63 (2003) 1543–1550.
[13] URL:
[14] URL;
[15] Lech Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley &Sons Ltd..
[16] URL;
[17] URL;
[18] S. Iijima, , Nature, vol. 354, (1991) 56-58.
[19] P. J. F. Harris, ‘Carbon nanotubes and related structures’, Cambridge University press, 1999.
[20] S. S. Samal, S. Bal, JMMCE, vol. 7 No. 4 (2008) 355-370.
[21] URL:
[22] URL:
[23] T. Laha, A. Agarwal, Tim Mc Kechnie, S. Seal, Material Science and Engineering (2004) 249-258.
[24] T. Laha, Y. Liu, A. Agarwal, Journal of Nano Science and Nanotechnology, Vol. 7, (2007)1-10.
[25] K. Balani, Yao Chen, Sandip P. Harimkar, Narendra B. Dahotre, A. Agarwal, Acta Biomaterialia 3 (2007) 944-951.
[26] K. Balani, T. Zhang, A. Karakoti, W. Z. Li, S. Seal, A.Agarwal, Acta Materialia (2007).
[27] K. Balani, A. Agarwal, Nanotechnology19 (2008) 1-8, IOP Publishing Ltd.
[28] K. Balani, A. Agarwal, Surface & Coating Technology 202 (2008) 4270-4277.
[29] S. R. Bakshi, V. Singh, K. Balani, D. Graham McCartney, S. Seal, A. Agarwal, Surface & Coating Technology 202 (2008) 5162-5169.
[30] A. K. Keshri, K. Balani, S. R. Bakshi, V. Singh, T. Laha, S. Seal, A. Agarwal, Surface & Coating Technology 203 (2009) 2193-2201.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.