DABCO Promoted an Efficient and Convenient Synthesis of Pyrrole in Aqueous Medium


The synthesis of C-substituted and N-substituted pyrrole is described by the reaction of phenacyl bromides, pentane-2, 4-dione and amine in aqueous medium using DABCO as a catalyst. The method is very convenient and applicable for alkyl as well as aryl amines and phenacyl bromides. The procedure is amenable for the synthesis of new substituted pyrroles. Moreover, aqueous medium makes the method more eco-friendly.

Share and Cite:

Meshram, H. , Bangade, V. , Reddy, B. , Kumar, G. and Thakur, P. (2012) DABCO Promoted an Efficient and Convenient Synthesis of Pyrrole in Aqueous Medium. International Journal of Organic Chemistry, 2, 159-165. doi: 10.4236/ijoc.2012.22024.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. A. Jones and G. P. Bean, “The Chemistry of Pyrroles,” Academic Press, London, 1977.
[2] R. J. Sundberg, “Comprehensive Heterocyclic Chemistry,” Pergamon Press, Oxford, 1984, pp. 313-379. doi:10.1016/B978-008096519-2.00056-4
[3] D. L. Boger, C. W. Boyce, M. A. Labroli, C. A. Sehon, and Q. Jin, “Total Synthesis of Ningalin A, Lamellarin O, Lukianol A, and Permethyl Storniamide A Utilizing Het- erocyclic Azadiene Diels-Alder Reactions,” Journal of the American Chemical Society, Vol. 121, No. 1, 1999, pp. 54-62. doi:10.1021/ja982078+
[4] L. F. Tietze and G. Nordmann, “Synthesis of a Linear Oligomeric Styrylpyrrole Using Multiple Heck and Wittig Reactions,” Synlett, No. 3, 2001, pp. 337-340.
[5] L. Groenendaal, E. W. Meijer and J. A. J. M. Vekemans, “Electronic Materials: The Oligomer Approach,” K. M. Allen and G. Wegner, Eds., Wiley-VCH, Weinheim, 1997.
[6] J. J. Kulagowski, H. B. Broughton, N. R. Curtis, I. M. Mawer, M. P. Ridgill, R. Baker, F. Emms, S. B. Freed-Man, R. Marwood, S. Patel, C. I. Ragan and P. D. Leeson, “3[[4-(4-Chlorophenyl)-piperazin-1-yl]-1H-pyrrolo[2,3-b] Pyridine: An Antagonist with High Affinity and Selectiv- ity for the Human Dopamine D-4 Receptor,” Journal of Medicinal Chemistry, Vol. 39, No. 10, 1996, pp. 1941- 1942. doi:10.1021/jm9600712
[7] J. R. Henry, K. C. Rupert, J. H. Dodd, I. J. Turchi, S. A. Wadsworth, D. E. Cavender, B. Fahmy, G. C. Olini, J. E. Davis, J. L. P. Genesy, P. H. Schafer and J. J. Siekierka, “6-Amino-2-(4-fluorophen-yl)-4-metho-xy-3-(4-pyridyl)-1H-pyrrolo[2,3-b]pyridine (RNJ 68354): A Potent and Selective P-38 Kinase Inhibitor,” Journal of Medicinal Chemistry, Vol. 41, No. 22, 1998, pp. 4196-4198. doi:10.1021/jm980497b
[8] I. A. Schepetkin, A. I. Khlebnikov and M. T. Quinn, “N- Benzoylpyrazoles Are Novel Small-Molecule Inhibitors of Human Neutrophil Elastase,” Journal of Medicinal Chemistry, Vol. 50, No. 20, 2007, pp. 4928-4938. doi:10.1021/jm070600+
[9] A. Miszke, H. Foks, A. Kedazia, E. Kwapisz and Z. Zwolska, “The Synthesis and Microbiological Activity of 2-Mercapto-4-(pyrrolidin-1-yl)pyridine Derivatives,” Het-erocycles, Vol. 75, No. 9, 2008, pp. 2251-2261.
[10] V. K. Alexander, A. W. Sromek and V. Gevorgyan, “A Novel Cu-Assisted Cycloisomerization of Alkynyl Imines: Efficient Synthesis of Pyrroles and Pyrrole-Containing Heterocycles,” Journal of the American Chemical Society, Vol. 123, No. 9, 2001, pp. 2074-2075. doi:10.1021/ja0058684
[11] J. T. Binder and S. F. Kirsch, “Synthesis of Highly Sub-stituted Pyrroles via a Mul-timetal-Catalyzed Rearrange- ment-Condensation-Cyclization Domino Approach,” Organic Letters, Vol. 8, No. 10, 2001, pp. 2151-2153.
[12] H. Shiraishi, T. Nishitani, S. Sakaguchi and Y. Ishii, “Preparation of Substituted Alkylpyrroles via Samarium- Catalyzed Three-Component Coupling Reaction of Al-dehydes, Amines, and Nitroalkanes,” The Journal of Organic Chemistry, Vol. 63, No. 18, 1998, pp. 6234-6238. doi:10.1021/jo980435t
[13] S. N. Murthy, B. Madhav, A. V. Kumar, K. R. Rao and Y. V. D. Nageswar, “Multicomponent Approach Towards the Synthesis of Substituted Pyrroles under Supramolecular Catalysis Using b-Cyclodextrin as a Catalyst in Water Under Neutral Conditions,” Helvetica Chimica Acta, Vol. 92, 2009, pp. 2118-2124. doi:10.1002/hlca.200900098
[14] P. T. Anastas, J. C. Warner, “Green Chemistry: Theory and Practice,” Oxford University Press, New York, 1998, pp. 30.
[15] C. J. Li, “Organic Reactions in Aqueous Media with a Focus on Carbon-Carbon Bond Formations: A Decade Update,” Chemical Review, Vol. 105, No. 8, 2005, pp. 3095- 3166. doi:10.1021/cr030009u
[16] C. Zorn, F. Gnad, S. Salmen, T. Herpin and O. Reiser, “Deprotection of N-Alloc amines by Pd(0)/DABCO—An efficient method for in situ peptide coupling of labile amino acids,” Tetrahedron Letters, Vol. 42, No. 40, 2001, pp. 7049-7053. doi:10.1016/S0040-4039(01)01453-8
[17] P. R. Krishna, E. R. Sekhar and V. Kannan, “The Use of Acetylenic Aldehydes in Baylis-Hillman Reactions: Synthesis of Versatile Allyl Propargyl Alcohols,” Tetrahe-dron Letters, Vol. 44, No. 27, 2003, pp. 4973-4975.
[18] A. Kumar and S. S. Pawar, “Salt Effects on the Baylis-Hillman Reaction,” Tetrahedron, Vol. 59, No. 27, 2003, pp. 5019-5026. doi:10.1016/S0040-4020(03)00760-9
[19] L. Cecchi, F. D. Sarlo and F. Machetti, “1,4-Diazabicyclo [2.2.2]octane (DABCO) as an Efficient Reagent for the Synthesis of Isoxazole Derivatives from Primary Nitro Compounds and Dipolarophiles: The Role of the Base,” European Journal of The Organic Chemistry, Vol. 2006, No. 21, 2006, pp. 4852-4860. doi:10.1002/ejoc.200600475
[20] X. Bu, H. Jing, L. Wang, T. Chang, L. Jin and Y. Liang, “Organic Base Catalyzed O-Alkylation of Phenols under Solvent-Free Condition,” Journal of Molecular Catalysis A: Chemical, Vol. 259, No. 1-2, 2006, pp. 121-124. doi:10.1016/j.molcata.2006.06.009
[21] T. Sharafi and M. M. Heravi, “DABCO, A Reagent for Deprotection of Benzylic Trimethylsilyl Ethers under Microwave Irradiation in a Sol-ventless System,” Phosphorus, Sulfur Silicon, Vol. 179, No. 12, 2004, pp. 2437-2440. doi:10.1080/10426500490485327
[22] R. S. Varma, R. K. Saini and H. M. Meshram, “Selective Oxidation of Sulfides to Sulfoxides and Sulfones by Microwave Thermolysis on Wet Silica-Supported Sodium Pe- riodate,” Tetrahedron Letters, Vol. 38, No. 37, 1997, pp. 6525-6528. doi:10.1016/S0040-4039(97)01520-7
[23] H. M. Meshram, D. Srinivas and J. S. Yadav, “A General Synthesis of Isothiocy-anates from Dithiocarbamates Using Claycop,” Tetrahedron Letters, Vol. 38, No. 50, 1997, pp. 8743-8744. doi:10.1016/S0040-4039(97)10158-7
[24] H. M. Meshram, G. S. Reddy and J. S. Yadav, “Clay Supported Ammonium Nitrate ‘Clayan’: A Mild and Eco-Friendly Reagent for Dethioacetalization,” Tetrahedron Letters, Vol. 38, No.51, 1997, pp. 8891-8894. doi:10.1016/S0040-4039(97)10349-5
[25] H. M. Meshram, G. S. Reddy, M. M. Reddy and J. S. Yadav, “Zinc Mediated Facile Amide Formation: Application to Alkyl, Aryl, Heterocycle, Carbohydrate and Amino Acids,” Tetrahedron Letters, Vol. 39, No. 23, 1998, pp. 4103-4106. doi:10.1016/S0040-4039(98)00666-2
[26] H. M. Meshram, B. C. Reddy and P. R. Goud, “DABCO Promoted an Efficient Synthesis of Benzofurans,” Synthetic Communications, Vol. 39, 2009, pp. 2297-2303. doi:10.1080/00397910802654740
[27] H. M. Meshram, G. S. Kumar, P. Ramesh and B. C. Reddy, “One-Pot Synthesis of Quinoxaline-2-Carboxylate Derivatives Using Ionic Liquid as Reusable Reaction Media,” Tetrahedron Letters, Vol. 51, No. 33, 2010, pp. 4313-4316. doi:10.1016/j.tetlet.2010.05.099
[28] H. M. Meshram, P. Ramesh, G. S. Kumar and B. C. Reddy, “A Mild and Convenient Synthesis of Quinoxalines via Cyclization-Oxidation Process Using DABCO as Catalyst,” Tetrahe-dron Letters, Vol. 51, No. 19, 2010, pp. 2580-2585. doi:10.1016/j.tetlet.2010.01.107
[29] R. Dalpozzo, A. D. Nino, M. Nardi, B. Russo and A. Procopio, “Erbium(III) Triflate: A Valuable Catalyst for the Synthesis of Aldimines, Ketimines, and Enaminones,” Synthesis, No. 7, 2006, pp. 1127-1132. doi:10.1055/s-2006-926378
[30] V. Sridharan, C. Avendano and J. C. Menendez, “General, Mild and Efficient Synthesis of β-Enaminones Cata- lyzed by Ceric Ammonium Nitrate,” Synlett, No. 6, 2007, pp. 881-884.
[31] M. Fan, L. Guo, X. Liu, W. Liu and Y. Liang, “A Mild, Convenient and Efficient Single-Step Method for the Synthesis of Polysubstituted Furans via Ammonium Ylide Routes,” Synthesis, No. 3, 2005, pp. 391-396.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.