Electrical Conductivity of Collapsed Multilayer Graphene Tubes


Synthesis of multilayer graphene on copper wires by a chemical vapor deposition method is reported. After copper etching, the multilayer tube collapses forming stripes of graphitic films, their electrical conductance as a function of temperature indicate a semiconductor-like behavior. Using the multilayer graphene stripes, a cross junction is built and owing to its electrical behavior we propose that a tunneling process exists in the device.

Share and Cite:

Mendoza, D. (2012) Electrical Conductivity of Collapsed Multilayer Graphene Tubes. World Journal of Nano Science and Engineering, 2, 53-57. doi: 10.4236/wjnse.2012.22009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. O. Sofo, A. S. Chaudhari and G. D. Barber, “Graphane: A Two-Dimensional Hydrocarbon,” Physical Review B, Vol. 75, No. 15, 2007, Article ID: 153401. doi:10.1103/PhysRevB.75.153401
[2] R. R. Nair, W. Ren, R. Jalil, I. Riaz, V. G. Kravets, L. Britnell, P. Blake, F. Schedin, A. S. Mayorov, S. Yuan, M. I. Katsnelson, H. M. Cheng, W. Strupinski, L. G. Bulusheva, A. V. Okotrub, I. V. Grigorieva, A. N. Grigorenko, K. S. Novoselov and A. K. Geim, “Fluorographene: A Two-Dimensional Counterpart of Teflon,” Small, Vol. 6, No. 24, 2010, pp. 2877-2884. doi:10.1002/smll.201001555
[3] X. Wang, Y. Ouyang, L. Jiao, H. Wang, L. Xie, J. Wu, J. Guo and H. Dai, “Graphene Nanoribbons with Smooth Edges Behave as Quantum Wires,” Nature Nanotechnology, Vol. 6, No. 9, 2011, pp. 563-567. doi:10.1038/nnano.2011.138
[4] D. Yu, E. M. Lupton, M. Liu, W. Liu and F. Liu, “Collective Magnetic Behavior of Graphene Nanohole Superlattices,” Nano Research, Vol. 1, No. 1, 2008, pp. 56-62. doi:10.1007/s12274-008-8007-6
[5] W. Lu, Z. F. Wang, Q. W. Shi, J. Yang and F. Liu, “Band-Gap Scaling of Graphene Nanohole Superlattices,” Physical Review B, Vol. 80, No. 23, 2009, Article ID: 233405. doi:10.1103/PhysRevB.80.233405
[6] P. Y. Chen and A. Alu, “ Atomically Thin Surface Cloak Using Graphene Monolayers,” ACS NANO, Vol. 5, No. 7, 2011, pp. 5855-5863. doi:10.1021/nn201622e
[7] A. Vakil and N. Engheta, “Transformation Optics Using Graphene,” Science, Vol. 332, No. 6035, 2011, pp. 1291-1294. doi:10.1126/science.1202691
[8] G. Gao, T. Cagin and W. A. Goddard, “Energetics, Structure, Mechanical and Vibrational Properties of Single-Walled Carbon Nanotubes,” Nanotechnology, Vol. 9, No. 3, 1998, pp. 184-191. doi:10.1088/0957-4484/9/3/007
[9] P. E. Lamert, P. Zhang and V. H. Crespi, “Gapping by Squashing: Metal-Insulator and Insulator-Metal Transitions in Collapsed Carbon Nanotubes,” Physical Review Letters, Vol. 84, No. 11, 2000, pp. 2453-2456. doi:10.1103/PhysRevLett.84.2453
[10] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutu, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science, Vol. 324, No. 5932, 2009, pp. 1312-1314. doi:10.1126/science.1171245
[11] A. W. Robertson and J. H. Warner, “Hexagonal Single Crystal Domains of Few-Layer Graphene on Copper Foils,” Nano Letters, Vol. 11, No. 3, 2011, pp. 1182-1189. doi:10.1021/nl104142k
[12] R. Wang, Y. Hao, Z. Wang, H. Gong and J. T. L. Thong, “Large-Diameter Graphene Nanotubes Synthesized Using Ni Nanowire Templates,” Nano Letters, Vol. 10, No. 12, 2010, pp. 4844-4850. doi:10.1021/nl102445x
[13] C. Bautista and D. Mendoza, “Multilayer Graphene Synthesized by CVD Using Liquid Hexane as the Carbon Precursor,” World Journal of Condensed Matter Physics, Vol. 1, No. 4, 2011, pp. 157-160. doi:10.4236/wjcmp.2011.14023
[14] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres and A. K. Geim, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, Vol. 320, No. 5881, 2008, p. 1308. doi:10.1126/science.1156965
[15] S. Chen, W. Cai, R. D. Piner, J. W. Suk, Y. Wu, Y. Ren, J. Kang and R. S. Ruoff, “Synthesis and Characterization of Large-Area Graphene and Graphite Films on Commercial Cu-Ni Alloy Foils,” Nano Letters, Vol. 11, No. 9, 2011, pp. 3519-3525. doi:10.1021/nl201699j
[16] M. Müller, M. Br?uninger and B. Trauzettel, “Temperature Dependence of the Conductivity of Ballistic Graphene,” Physical Review Letters, Vol. 103, No. 19, 2009, Article ID: 196801. doi:10.1103/PhysRevLett.103.196801
[17] S. Adam and M. D. Stiles, “Temperature Dependence of the Diffusive Conductivity of Bilayer Graphene,” Physical Review B, Vol. 82, No. 7, 2010, Article ID: 075423. doi:10.1103/PhysRevB.82.075423
[18] P. R. Wallace, “The Band Theory of Graphite,” Physical Review, Vol. 71, No. 9, 1947, pp. 622-634. doi:10.1103/PhysRev.71.622
[19] E. L. Wolf, “Principles of Electron Tunneling Spectroscopy,” Oxford University Press, New York, 1989.
[20] M. S. Dresselhaus and G. Dresselhaus, “Intercalation Compounds of Graphite,” Advances in Physics, Vol. 30, No. 2, 1981, pp. 139-326. doi:10.1080/00018738100101367
[21] D. Allor, T. D. Cohen and D. A. McGady, “Schwinger Mechanism and Graphene,” Physical Review D, Vol. 78, No. 9, 2008, Article ID: 096009. doi:10.1103/PhysRevD.78.096009
[22] R. Rosenstein, M. Lewkowicz, H. C. Kao and Y. Korniyenko, “Ballistic Transport in Graphene Beyond Linear Response,” Physical Review B, Vol. 81, No. 4, 2010, Article ID: 041416. doi:10.1103/PhysRevB.81.041416
[23] B. Dóra and R. Moessner, “Nonlinear Electric Transport in Graphene: Quantum Quench Dynamics and the Schwinger Mechanism,” Physical Review B, Vol. 81, No. 16, 2010, Article ID: 165431. doi:10.1103/PhysRevB.81.165431
[24] N. Vandecastle, A. Barreiro, M. Lazzeri, A. Bachtold and F. Mauri, “Current-Voltage Characteristics of Graphene Devices: Interplay between Zenner-Klein Tunneling and Defects,” Physical Review B, Vol. 82, No. 4, 2010, Article ID: 045416. doi:10.1103/PhysRevB.82.045416

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.