A Fair Plan to Safeguard Earth’s Climate


A maximum global-mean warming of 2°C above preindustrial temperatures has been adopted by the United Nations Framework Convention on Climate Change to “prevent dangerous anthropogenic interference with the climate system”. Attempts to find agreements on emissions reductions have proved highly intractable because industrialized countries are responsible for most of the historical emissions, while developing countries will produce most of the future emissions. Here we present a Fair Plan for reducing global greenhouse-gas emissions. Under the Plan, all countries begin mitigation in 2015 and reduce greenhouse-gas emissions to zero in 2065. Developing countries are required to follow a mitigation trajectory that is less aggressive in the early years of the Plan than the mitigation trajectory for developed countries. The trajectories are chosen such that the cumulative emissions of the Kyoto Protocol’s Annex B (developed) and non-Annex B (developing) countries are equal. Under this Fair Plan the global-mean warming above preindustrial temperatures is held below 2°C.

Share and Cite:

E. Schlesinger, M. , J. Ring, M. and F. Cross, E. (2012) A Fair Plan to Safeguard Earth’s Climate. Journal of Environmental Protection, 3, 455-461. doi: 10.4236/jep.2012.36055.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] United Nations, “United Nations Framework Convention on Climate Change,” 1992. http://unfccc.int/resource/docs/convkp/conveng.pdf
[2] Council of the European Union, “Presidency Conclusions,” 2005. http://register.consilium.europa.eu/pdf/en/05/st07/st07619-re01.en05.pdf
[3] United Nations, “Kyoto Protocol to the United Nations Framework Convention on Climate Change,” 1997. http://unfccc.int/resource/docs/convkp/kpeng.pdf
[4] Public Affairs Section, United States Embassy, Vienna, Austria, “Fact Sheet: United States Policy on the Kyoto Protocol,” 2001. http://www.usembassy.at/en/download/pdf/kyoto.pdf.
[5] United Nations, “Report of the Conference of the Parties on its Sixteenth Session. Addendum Part Two: Action taken by the Conference of the Parties at Its Sixteenth Session,” 2010. http://unfccc.int/meetings/cancun_nov_2010/meeting/6266/php/view/reports.php
[6] K. Riahi, A. Gruebler and N. Nakicenovic, “Scenarios of Long-Term Socio-Economic and Environmental Development under Climate Stabilization,” Technological Forecasting and Social Change, Vol. 74, No. 7, 2007, pp. 887-935. doi:10.1016/j.techfore.2006.05.026
[7] M. Meinshausen, S. J. Smith, K. V. Calvin, J. S. Daniel, M. Kainuma, J.-F. Lamarque, K. Matsumoto, S. A. Montzka, S. C. B. Raper, K. Riahi, A. M. Thomson, G. J. M. Velders and D. van Vuuren, “The RCP Greenhouse Gas Concentrations and Their Extension from 1765 to 2300,” Climatic Change, Vol. 109, No. 1-2, 2011, pp. 213-241. doi:10.1007/s10584-011-0156-z
[8] J. S. Fuglesvedt and T. Berntsen, “A Simple Model for Scenario Studies of Changes in Climate. Version 1.0,” CICERO, Oslo, 1999.
[9] T. A. Boden, G. Marland and R. J. Andres, “Global, Regional and National Fossil-Fuel CO2 Emissions,” Carbon Dioxide Information Analysis Center, Oak Ridge, 2011.
[10] G. P. Peters, J. C. Minx, C. L. Weber and O. Edenhofer, “Growth in Emission Transfers via International Trade from 1990 to 2008,” Proceedings of the National Academy of Sciences, Vol. 108, No. 21, 2011, pp. 8903-8908. doi:10.1073/pnas.1006388108
[11] G. Myhre, E. J. Highwood, K. P. Shine and F. Stordal, “New Estimates of Radiative Forcing Due to Well Mixed Greenhouse Gases,” Geophysical Research Letters, Vol. 25, No. 14, 1998, pp. 2715-2718. doi:10.1029/98GL01908
[12] S. J. Smith, J. van Aardenne, Z. Klimont, R. Andres, A. C. Volke and S. Delgado Arias, “Anthropogenic Sulfur Dioxide Emissions 1850-2005,” Atmospheric Chemistry and Physics, Vol. 11, 2011, pp. 1101-1116. doi:10.5194/acp-11-1101-2011
[13] T. C. Bond, E. Bhardwaj, R. Dong, R. Jogani, S. Jung, C. Roden, D. G. Streets and N. M. Trautmann, “Historical Emissions of Black and Organic Carbon Aerosol from Energy-Related Combustion, 1850-2000,” Global Biogeochemical Cycles, Vol. 21, 2007, GB2018. doi:10.1029/2006GB002840
[14] S. D. Fernandes, N. M. Trautmann, D. G. Streets, C. A. Roden and T. C. Bond, “Global Biofuel Use, 1850-2000,” Global Biogeochemical Cycles, Vol. 21, 2007, GB2019. doi:10.1029/2006GB002836
[15] A. Ito and J. Penner, “Historical Emissions of Carbonaceous Aerosols from Biomass and Fossil Fuel Burning for the Period 1870-2000,” Global Biogeochemical Cycles, Vol. 19, 2005, GB2028. doi:10.1029/2004GB002374
[16] J. Lean, G. Rottman, J. Harder and K. Kopp, “SORCE Contributions to New Understanding of Global Change and Solar Variability,” Solar Physics, Vol. 230, No. 1, 2005, pp. 27-53. doi:10.1007/s11207-005-1527-2
[17] Y.-M. Wang, J. L. Lean and N. R. Sheeley, “Modeling the Sun’s Magnetic Field and Irradiance since 1713,” Astrophyical Journal, Vol. 625, No. 1, 2005, pp. 522-538. doi:10.1086/429689
[18] N. G. Andronova, E. V. Rozanov, F. Yang, M. E. Schlesinger and G. L. Stenchikov, “Radiative Forcing by Volcanic Aerosols from 1850 through 1994,” Journal of Geophysical Research, Vol. 104, No. D14, 1999, pp. 16807-16826. doi:10.1029/1999JD900165
[19] M. E. Schlesinger, N. G. Andronova, B. Entwistle, A. Ghanem, N. Ramankutty, W. Wang and F. Yang, “Modeling and Simulation of Climate and Climate Change,” In: G. Cini Castagnoli and A. Provenzale, Eds., Past and Present Variability of the Solar-Terrestrial System: Measurement, Data Analysis and Theoretical Models, IOS Press, Amsterdam, 1997, pp. 389-429.
[20] M. I. Hoffert, A. J. Callegari and C.-T. Hsieh, “The Role of Deep Sea Heat Storage in the Secular Response to Climatic Forcing,” Journal of Geophysical Research, Vol. 85, No. C11, 1980, pp. 6667-6679. doi:10.1029/JC085iC11p06667
[21] C. S. Bretherton, C. Smith and J. M. Wallace, “An Intercomparison of Methods for Finding Coupled Patterns in Climate Data,” Journal of Climate, Vol. 5, No. 6, 1992, pp. 541-560. doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2
[22] R. J. Lempert, M. E. Schlesinger, S. C. Bankes and N. G. Andronova, “The Impacts of Climate Variability on NearTerm Policy Choices and the Value of Information,” Climatic Change, Vol. 45, No. 1, 2000, pp. 129-161. doi:10.1023/A:1005697118423
[23] R. Mendelsohn, W. Morrison, M. E. Schlesinger and N. G. Andronova, “Country-Specific Market Impacts of Climate Change,” Climatic Change, Vol. 45, No. 3-4, 2000, pp. 553-569. doi:10.1023/A:1005598717174
[24] R. Mendelsohn, M. E. Schlesinger and L. Williams, “Comparing Impacts Across Climate Models,” Integrated Assessment, Vol. 1, No. 1, 2000, pp. 37-48. doi:10.1023/A:1019111327619
[25] R. Mendelsohn, M. E. Schlesinger and L. Williams, “The Climate Impacts of Sulfate Aerosols,” Integrated Assessment, Vol. 2, No. 3, 2001, pp. 111-122. doi:10.1023/A:1013319100965
[26] M. E. Schlesinger and X. Jiang, “Revised Projection of Future Greenhouse Warming,” Nature, Vol. 350, 1991, pp. 219-221. doi:10.1038/350219a0
[27] R. J. Lempert and M. E. Schlesinger, “Robust Strategies for Abating Climate Change,” Climatic Change, Vol. 45, No. 3-4, 2000, pp. 387-401. doi:10.1023/A:1005698407365
[28] R. J. Lempert and M. E. Schlesinger, “Climate-Change Strategy Needs to Be Robust,” Nature, Vol. 412, 2001, p. 375. doi:10.1038/35086617
[29] R. J. Lempert and M. E. Schlesinger, “Adaptive Strategies for Climate Change,” In: R. G. Watts, Ed., Innovative Energy Systems for CO2 Stabilization, Cambridge University Press, Cambridge, 2002, pp. 45-86. doi:10.1017/CBO9780511536038.003
[30] R. J. Lempert, N. Nakicenovic, D. Sarewitz and M. E. Schlesinger, “Characterizing Climate-Change Uncertainties for Decisionmakers,” Climatic Change, Vol. 65, No. 1-2, 2004, pp. 1-9.
[31] M. J. Ring, D. Lindner, E. F. Cross and M. E. Schlesinger, “Causes of the Global Warming Observed Since the 19th Century,” Atmospheric and Climate Sciences, 2012, under review.
[32] P. Brohan, J. J. Kennedy, I. Harris, S. F. B. Tett and P. D. Jones, “Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Dataset from 1850,” Journal of Geophysical Research, Vol. 111, 2006, D12106. doi:10.1029/2005JD006548
[33] J. Hansen, R. Ruedy, M. Sato and K. Lo, “Global Surface Temperature Change,” Reviews of Geophysics, Vol. 48, 2010, RG4004. doi:10.1029/2010RG000345
[34] T. M. Smith, R. W. Reynolds, T. C. Peterson and J. H. Lawrimore, “Improvements to NOAA’s Historical Merged Land-Ocean Surface Temperature Analysis,” Journal of Climate, Vol. 21, No. 10, 2008, pp. 2283-2296. doi:10.1175/2007JCLI2100.1
[35] G. C. Hegerl, F. W. Zwiers, P. Braconnot, N. P. Gillett, Y. Luo, J. A. M. Orsini, N. Nicholls, J. E. Penner and P. A. Stott, “Understanding and Attributing Climate Change,” In: S. Solomon, D. Qin, et al., Eds., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
[36] European Commission, “A Roadmap for Moving to a Competitive Low Carbon Economy in 2050,” 2011. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:52011DC0112:EN:NOT
[37] A. Maddison, “Statistics on World Population, GDP and Per Capita GDP, 1-2008 AD,” 2008. http://www.ggdc.net/MADDISON/oriindex.htm
[38] United Nations, “World Population Prospects: The 2010 Revision,” 2010. http://esa.un.org/wpp/unpp/panel_population.htm

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.