[1]
|
J. S. Jang, “ANFIS: Adaptive-Network-Based Fuzzy In- ference System,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, 1993, pp. 665-684.
|
[2]
|
J. R. Jang and C. T. Sun, “Neuro-Fuzzy and Soft Com- puting: A Computational Approach to Learning and Machine Intelligence,” Prentice-Hall, Inc., Upper Saddle River, New Jersy, 1997.
|
[3]
|
V. Diamadopoulou, C. Makris, Y. Panagis and E. Sakko- poulos, “Techniques to Support Web Service Selection and Consumption with QoS Characteristics,” Journal of Network and Computer Applications, Vol. 31, No. 2, 2008, pp. 108-130.
|
[4]
|
A. F. M. Huang, C. W. Lan and S. J. H. Yang, “An Optimal QoS-Based Web Service Selection Scheme,” Information Sciences, Vol. 179, No. 19, 2009, pp. 3309-3322.
|
[5]
|
L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam and H. Chang, “QoS-Aware Middleware for Web Services Composition,” IEEE Transactions on Software Engineering, 2004, pp. 311-327.
|
[6]
|
D. A. Menascé, H. Ruan and H. Gomaa, “QoS Manage- ment in Service-Oriented Architectures,” Journal of Per- formance Evaluation, Vol. 64, No. 7-8, 2007, pp. 646-663.
|
[7]
|
D. A. Menasce, “QoS Issues in Web Services,” IEEE Internet Computing, Vol. 6, No. 6, 2002, pp. 72-75.
|
[8]
|
M. Sultana, M. M. Akbar and M. Rouf, “Network Flow Heuristic Algorithm for a Distributed Web Service Selection Problem,” IEEE Conference on Communications, Compu- ters and Signal Processing, 2009, pp. 465-470.
|
[9]
|
D. Tsesmetzis, I. Roussaki and E. Sykas, “QoS-Aware Service Evaluation and Selection,” European Journal of Operational Research, Vol. 191, No. 3, 2008, pp. 1101- 1112.
|
[10]
|
S. Chaari, Y. Badr and F. Biennier, “Enhancing Web Ser- vice Selection by QOS-Based Ontology and WS-Policy,”
|
[11]
|
Proceeding of the 23rd ACM Symposium on Applied Computing, Ceará, 2008, pp. 2426-2431.
|
[12]
|
D. A. Menascé, E. Casalicchio and V. Dubey, “On Optimal Service Selection in Service Oriented Archi- tectures,” Performance Evaluation Journal, Vol. 67, No. 8, 2010, pp. 659-675.
|
[13]
|
H. Pfeffer, S. Krüssel and S. Steglich, “A Fuzzy Logic based Model for Representing and Evaluating Service Composition Properties,” The Third International Con- ference on Systems and Networks Communications, Bangalore, 2009.
|
[14]
|
M. Lin, J. Xie, H. Guo and H. Wang, “Solving Qos-Driven Web Service Dynamic Composition as Fuzzy Constraint Satisfaction,” IEEE International Conference on e-Tech- nology, e-Commerce and e-Service, Hong Kong, 2005.
|
[15]
|
P. Wang, K. Chao, C. Lo, C. Huang and Y. Li, “A Fuzzy
Model for Selection of QoS-Aware Web Services,” IEEE International Conference on e-Business Engineering, IEEE Computer Society, Shanghai, 2006, pp. 585-593.
|
[16]
|
K. M. Chao, M. Younas, C. C. Lo and T. H. Tan, “Fuzzy Atchmaking for Web Services,” The 19th International Conference on Advanced Information Networking and Applications, Taipei, 2005.
|
[17]
|
L. Zhuang, Y. F. Huang, W. G. Jian, J. B. Zhou and H. Q. Guo, “Solving Fuzzy QoS Constraint Satisfaction Tech- nique for Web Service Selection,” International Con- ference on Computational Intelligence and Security Work- shops, Harbin, 2007.
|
[18]
|
H. Tong and S. Zhang, “A Fuzzy Multi-Attribute Decision Making Algorithm for Web Services Selection Based on QoS,” The IEEE Asia-Pacific Conference on Services Computing, Guangzhou, 2006.
|
[19]
|
M. A. Denai, F. Palis and A. Zeghbib, “ANFIS Based Modelling and Control of Non-Linear Systems: A Tu- torial,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 4, 2004, pp. 3433-3438.
|
[20]
|
O. Nelles, A. Fink, R. Babuka and M. Setnes, “Com- parison of Two Construction Algorithms for Takagi- Sugeno Fuzzy Models,” International Journal of Applied Mathematics and Computer Science, 2000, pp. 835-855.
|
[21]
|
P. Werbos, “The Toots of the Back Propagation: From Ordered Derivatives to Neural Networks and Political Forecasting,” John Wiley and Sons, Inc, New York, 1993.
|