The Influence of Gonadectomy on Anxiolytic and Antidepressant Effects of Melatonin in Male and Female Wistar Rats: A Possible Implication of Sex Hormones


The main objective of this study was to analyze the effects of sex, ovariectomy (Ovx) and orchidectomy (Orx) on antidepressant and anxiolytic effect of melatonin in forced swimming test, open field test and elevated plus maze test. Initially, 4 mg/kg of melatonin was daily administered, at 4:00 pm, to intact male and female rats during 8 weeks. Our results have shown that the effect of chronic injection of Mel is sex dependent in the three behaviors tests. Females rats have responded better than males in behavior test study after administration of melatonin, this difference between the sexes may be related to the action of sex hormones (androgens and estrogens) on behavior in males as well as in females. Secondly, to determine the possible interaction between Melatonin and steroid hormones, Ovx/sham female received Mel at dose of 4mg/kg alone or NaCl (0.9%) alone, and Orx/sham male received Mel at dose of 4 mg/kg alone or NaCl (0.9%) alone daily and during 8 weeks of treatment at 4:00 pm. All animals were tested in the open-field test, elevated plus maze test for anxiety behavior study, and forced swimming test for depression behavior study. Results revealed that Mel exerts an anxiolytic and antidepressant effects in the orchidectomized males and in intact females, confirming that the suppression of androgens by orchidectomy improved anxiolytic and antidepressant effects of melatonin in males. However in females, the suppression of estrogen by ovariectomy masked the antidepressant and anxiolytic effects of melatonin. Our results confirmed that the antidepressant and anxiolytic effects of melatonin are linked to sex hormones.

Share and Cite:

E. Zahra, L. Ibtissam, M. Abdelhalim, E. Aboubakr and O. Ali, "The Influence of Gonadectomy on Anxiolytic and Antidepressant Effects of Melatonin in Male and Female Wistar Rats: A Possible Implication of Sex Hormones," Neuroscience and Medicine, Vol. 3 No. 2, 2012, pp. 162-173. doi: 10.4236/nm.2012.32021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Illnerova, J. Vaneek and K. Hoffmann, “Regulation of the Pineal Melatonin Concentration in the Rat (Rattus norvegicus) and the Djungarian Hamster (Phodopus sungorus),” Comparative Biochemistry and Physiology Part A: Physiology, Vol. 74, No. 1, 1983, pp. 155-159. doi:10.1016/0300-9629(83)90727-2
[2] D. C. Klein and R. Y. Moore, “Pineal N-Acetyltransferase and Hydroxyindole-O-Methyltransferase: Control by the Suprachiasmatic Nucleus,” Brain Research, Vol. 174, No. 2, 1979, pp. 245-262. doi:10.1016/0006-8993(79)90848-5
[3] R. Y. Moore, “Entrainment Pathways and the Functional Organization of the Circadian Timing System,” In: R. M. Buijs, A. Kalsbeek, H. J. Romijn, C. M.-A. Pennartz and M. Mirmiram, Eds., Hypothalamic Integration of Circadian Rhythms, Elsevier, Amsterdam, 1996, pp. 101-117.
[4] R. Y. Moore, J. C. Speh and J.P. Card, “The Retinohypothalamic Tract Originates from a Distinct Subset of Retinal Ganglion Cells,” Journal of Comparative Neurology, Vol. 352, No. 3, 1995, pp. 351-366. doi:10.1002/cne.903520304
[5] R. K. Leak, J. P. Card and R. Y. Moore, “Suprachiasmatic Pacemaker Organization Analyzed by Viral Transynaptic Transport,” Brain Research, Vol. 819, No. 1-2, 1999, pp. 23-32. doi:10.1016/S0006-8993(98)01317-1
[6] W. J. Schwartz, N. Aronin, J. Takeuchi, M. R. Bennet and R. J. Peters, “Towards a Molecular Biology of the Suprachiasmatic Nucleus: Photic and Temporal Regulation of C-Fos Gene Expression,” Seminars in Neuroscience, Vol. 7, No. 1, 1995, pp. 53-60. doi:10.1016/1044-5765(95)90017-9
[7] D. C. Klein, D. Sugden and J. L. Weller, “Postsynaptic Alpha-Adrenergic Receptors Potentiate the Beta-Adrenergic Stimulation of Pineal Serotonin N-Acetyltransferase,” Proceedings of the National Academy of Sciences of USA, Vol. 80, No. 2, 1983, pp. 599-603. doi:10.1073/pnas.80.2.599
[8] D. A. Golombek, M. Martini and D. P. Cardinali, “Melatonin as an Anxiolytic in Rats: Time Dependence and Interaction with the Central GABAergic System,” European Journal of Pharmacology, Vol. 237, No. 2-3, 1993, pp. 231-236. doi:10.1016/0014-2999(93)90273-K
[9] J. Arendt. “Jet-Lag and Shift Work: (2). Therapeutic Use of Melatonin,” Journal of the Royal Society of Medicine, Vol. 92, No. 8, 1999, pp. 402-405.
[10] R. G. Listen, “Ethologically-Based Animal Models of Anxiety Disorders,” Pharmacology & Therapeutics, Vol. 46, No. 3, 1990, pp. 321-340. doi:10.1016/0163-7258(90)90021-S
[11] P. Bracke, “Sex Differences in the Course of Depression: Evidence from a Longitudinal Study of a Representative Sample of the Belgian Population,” Social Psychiatry and Psychiatric Epidemiology, Vol. 33, No. 9, 1998, pp. 420- 429. doi:10.1007/s001270050075
[12] I. O. Godfroid, “Sex Differences Relating to Psychiatric Treatment,” Canadian Journal of Psychiatry, Vol. 44, No. 4, 1999, pp. 362-367.
[13] G. Fink, B. E. Sumner, R. Rosie, O. Grace and J. P. Quinn, “Estrogen Control of Central Neurotransmission: Effect on Mood, Mental State, and Memory,” Cellular and Molecular Neurobiology, Vol. 16, No. 3, 1996, pp. 325-344. doi:10.1007/BF02088099
[14] S. J. Alonso, M. A. Castellano, D. Afonso and M. Rodriguez, “Sex Differences in Behavioral Despair: Relationships between Behavioral Despair and Open Field Activity,” Physiology & Behavior, Vol. 49, No. 1, 1991, pp. 69-72. doi:10.1016/0031-9384(91)90232-D
[15] H. M. T. Barros and M. Ferigolo, “Ethopharmacology of Imipramine in the Forced Swimming Test: Gender Differences,” Neuroscience & Biobehavioral Reviews, Vol. 23, No. 2, 1998, pp. 279-286. doi:10.1016/S0149-7634(98)00029-3
[16] C. M. Contreras, H. Lara-Morales, M. Molina-Hernandez, M. Saavedra and G. Arrell?′n-Rosas, “An Early Lesion of the Lateral Septal Nuclei Produces Changes in the Forced Swimming Test Depending on Gender,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, Vol. 19, No. 8, 1995, pp. 1277-1284. doi:10.1016/0278-5846(95)00266-9
[17] L. Mart?nez-Mota, C. M. Contreras and M. Saavedra, “Progesterone Reduces Immobility in Rats Forced to Swim,” Archives of Medical Research, Vol. 30, No. 4, 1999, pp. 286-289. doi:10.1016/S0188-0128(99)00024-X
[18] E. Estrada-Camarena, C. M. Contreras, M. Saavedra, I. Luna-Baltazar and C. Lopez-Rubalcava, “Participation of the Lateral Septal Nuclei (LSN) in the Antidepressant-Like Actions of Progesterone in the Forced Swimming Test (FST),” Behavioural Brain Research, Vol. 134, No. 1-2, 2002, pp.175-183. doi:10.1016/S0166-4328(02)00023-2
[19] E. Estrada-Camarena, A. Fernandez-Guasti, and C. LopezRubalcava, “Different Estrogenic Compounds Produce an Antidepressant-Like Effect in the Forced Swimming Test,” Neuropsychopharmacology, Vol. 28, No. 5, 2003, pp. 830-838. doi:10.1038/sj.npp.1300097
[20] I. L. Rachmann, J. R. Unnerstall, D. W. Pfaff and R. S. Cohen, “Estrogen Alters Behavior and Forebrain Cfos Expression in Ovariectomized Rats Subjected to the Forced Swimming Test,” Proceedings of the National Academy of Sciences of USA, Vol. 95, No. 23, 1998, pp. 13941-13946. doi:10.1073/pnas.95.23.13941
[21] P. C. Datta and M. G. King, “Melatonin: Effects on Brain and Behavior,” Neuroscience & Biobehavioral Reviews, Vol. 4, No. 4, 1980, pp. 451-458. doi:10.1016/0149-7634(80)90034-2
[22] A. S. Eison, R. P. Freeman, V. B. Guss, U. L. Mullins and R. N. Wright, “Melatonin Agonists Modulate 5-HT2A Receptor-Mediated Neurotransmission: Behavioral and Biochemical Studies in the Rat,” Journal of Pharmacology and Experimental Therapeutics, Vol. 273, No. 1, 1995, pp. 304-308.
[23] U. Halbreich, “Hormonal Interventions with Psychopharmacological Potential: An Overview,” Psychopharmacology Bulletin, Vol. 33, No. 2, 1997, pp. 281-286.
[24] A. L. Brotto, M. A. Barr and B. B. Gorzalka, “Sex Differences in Forced Swim and Open-Field Test Behaviours after Chronic Administration of Melatonin,” European Journal of Pharmacology, Vol. 402, No. 1-2, 2000, pp. 87-93. doi:10.1016/S0014-2999(00)00491-X
[25] M. Durand, O. Berton, S. Aguere, L. Edno, I. Combourieu, P. Mormede and F. Chaouloff, “Effects of Repeated-fluoxetine on Anxiety-Relatedbehaviours, Central Serotonergic Systems, and the Corticotropic Axis in SHR and WKY Rats,” Neuropharmacology, Vol. 38, No. 15, 1999, pp. 893-907. doi:10.1016/S0028-3908(99)00009-X
[26] A. G. Nasselo, C. Machado, J. F. Bastos and L. Felicio, “Sudden Darkness Induces a High Activity-Lower Anxiety State in Male and Female Rats,” Physiology & Behavior, Vol. 63, No. 3, 1998, pp. 451-454. doi:10.1016/S0031-9384(97)00462-9
[27] L. Schramm, M. P. McDonald and L. E. Limbird, “The α2A-Adrenergic Receptor Plays a Protective Role in Mouse Behavioral Models of Depression and Anxiety,” Journal of Neuroscience, Vol. 21, No. 13, 2001, pp. 4875-4882.
[28] L. Meyer, J. Caston and A. G. Mensah-Nyagan, “Seasonal variation of the Impact of a Stressful Procedure on open Field Behaviour and Blood Corticosterone in Laboratory Mice,” Behavioural Brain Research, Vol. 167, No. 2, 2006, pp. 342-348. doi:10.1016/j.bbr.2005.09.023
[29] F. Clenet, E. Bouyon, M. Hasco and M. Bourin, “Light/ Dark Cycle Manipulation Influences Mice Behavior in the Elevated Plus Maze,” Behavioural Brain Research, Vol. 166, No. 1, 2006, pp. 140-149. doi:10.1016/j.bbr.2005.07.018
[30] S. Pellower, P. Chopin, S. E. File and M. Briley, “Validation of Open: Closed Arms Entries in an Elevated Plus-Maze as a Measure of Anxiety in the Rat,” Journal of Neuroscience Methods, Vol. 14, No. 3, 1985, pp. 149-167. doi:10.1016/0165-0270(85)90031-7
[31] L. Torner, N. Toschi, A. Pohlinger, R. Landgraf and I. D. Neumann, “Anxiolytic and Anti-Stress Effects of Brain Prolactin: Improved Efficacy of Antisense Targeting of the Prolactin Receptor by Molecular Modeling,” Journal of Neuroscience, Vol. 21, No. 9, 2001, pp. 3207-3214.
[32] R. D. Porsolt, G. Anton, N. Blavet and M. Jalfre, “Behavioural Despair in Rats: A New Model Sensitive to Antidepressant Treatments,” European Journal of Pharmacology, Vol. 47, No. 4, 1978, pp. 379-391. doi:10.1016/0014-2999(78)90118-8
[33] A. Boissy, “Fear and Fearfulnss in Animals,” Quarterly Review of Biology, Vol. 70, No. 2, 1995, pp. 165-191. doi:10.1086/418981
[34] C. Kopp, E. Vogel, M. C. Rettori, P. Delagrange, P. Renard, D. Lesieur and R. Misslin, “Regulation of Emotional Behaviour by Day Length in Mice: Implication of Melatonin,” Behavioural Pharmacology, Vol. 10, No. 8, 1999, pp. 747-752.
[35] B. Guardiola-Lemaitre, A. Lenegre and R. D. Porsolt, “Combined Effects of Diazepam and Melatonin in Two Tests for Anxiolytic Activity in the Mouse,” Pharmacology Biochemistry and Behavior, Vol. 41, No. 2, 1992, pp. 405-408. doi:10.1016/0091-3057(92)90118-Y
[36] F. P. Valle and B. B. Gorzalka, “Open-Field Sex Differences Prior to Puberty in Rats,” Bulletin of the Psychonomic Society, Vol. 16, No. 6, 1980, pp. 429-431.
[37] M. S. Cohen, S. M. Kosslyn, H. C. Breiter, G. J. DiGirolamo, W. L. Thompson and A. K. Anderson , “Changes in Cortical Activity during Mental Rotation. A Mapping Study Using Functional MRI,” Brain, Vol. 119, No. 1, 1996, pp. 89-100. doi:10.1093/brain/119.1.89
[38] M. L. Dubocovich, E. Mogilnicka and P. M. Areso, “Antidepressant-Like Activity of the Melatonin Receptor Antagonist, Luzindole (N-0774), in the Mouse Behavioral Despair Test,” European Journal of Pharmacology, Vol. 182, No. 2, 1990, pp. 313-325. doi:10.1016/0014-2999(90)90290-M
[39] A. V. Shaji and S. K. Kulkarni, “Central Nervous System Depressant Activities of Melatonin in Rats and Mice,” Indian Journal of Experimental Biology, Vol. 36, No. 3, 1998, pp. 257-263.
[40] W. P. Pare and E. Redei, “Sex Differences and Stress Response to WKY Rats,” Physiology & Behavior, Vol. 54, No. 6, 1993, pp. 1179-1185. doi:10.1016/0031-9384(93)90345-G
[41] S. J. Alonso, M. A. Castellano, D. Afonso and M. Rodriguez, “Sex Differences in Behavioral Despair: Relationships between Behavioral Despair and Open Field Activity,” Physiology & Behavior, Vol. 49, No. 1, 1991. pp. 69-72. doi:10.1016/0031-9384(91)90232-D
[42] A. S. Eison, R. P. Freeman, V. P. Gus, U. L. Mullins and R. N. Wright, “Melatonin Agonists Modulate 5-HT2A Receptor Mediated Neurotransmission: Behavioural and Biochemical Studies in the Rat,” Journal of Pharmacology and Experimental Therapeutics, Vol. 273, No. 1, 1995, pp. 304-308.
[43] B. B. Gorzalka, L. A. Brotto and J. J. Hong, “Corticosterone Regulation of 5-HT2A Receptor Mediated Behaviors: Attenuation by Melatonin,” Physiology & Behavior, Vol. 67, No. 3, 1999, pp. 439-443. doi:10.1016/S0031-9384(99)00096-7
[44] V. Raghavendra and S. K. Kulkarni, “Melatonin Reversal of DOI-Induced Hypophagia in Rats: Possible Mechanism by Suppressing 5-HT(2A) Receptor-Mediated Activation of the HPA Axis,” Brain Research, Vol. 860, No. 1-2, 2000, pp. 112-118. doi:10.1016/S0006-8993(00)02031-X
[45] E. Sibelle, Z. Sarnyai, D. Benjamin, J. Gal, H. Baker and M. Toth, “Antisense Inhibition of 5-Hydroxytryptamine 2A Receptor Induces an Antidepressant-Like Effect in Mice,” Molecular Pharmacology, Vol. 52, No. 6, 1997, pp. 1056-1063.
[46] D. H. Overstreet, O. Pucilowerski, M. Retton, P. Delagrange and B. Guardiola-Lemaitre, “Effect of Melatonin Receptor Ligands on Swim Test Immobility,” Neuroreport, Vol. 9, No. 2, 1998, pp. 243-253. doi:10.1097/00001756-199801260-00014
[47] D. A. Golombek, P. Pevet and D. P. Cardinali, “Melatonin Effects on Behavior: Possible Mediation by the Central GABAergic System,” Neuroscience & Biobehavioral Reviews, Vol. 20, No. 3, 1996, pp. 403-412. doi:10.1016/0149-7634(95)00052-6
[48] P. Palanza, “Animal Models of Anxiety and Depression: How Are Females Different,” Neuroscience & Biobehavioral Reviews, Vol. 25, No. 3, 2001, pp. 219-233.
[49] E. Estrada-Camarena, A. Fernandez-Guasti and C. Lopez-Rubalcava, “Interaction between Estrogen Compounds and the Antidepressants Desipramine or Fluoxetine in Forced Swimming Test (FST), Psychopharmacology, Vol. 173, No. 1-2, 2004, pp. 144-145. doi:10.1007/s00213-003-1707-4
[50] L. Mart?nez-Motaa and A. Fernandez-Guasti, “Testosterone-Dependent Antidepressant-Like Effect of Noradrenergic But Not of Serotonergic Drugs,” Pharmacology, Biochemistry and Behavior, Vol. 78, No. 4, 2004, pp. 711-718. doi:10.1016/j.pbb.2004.05.016
[51] P. E. Cowell, D. J. Kostianovsky, R. C. Gur, B I. Turetsky and R. E. Gur, “Sex Differences in Neuroanatomical and Clinical Correlations in Schizophrenia,” American Journal of Psychiatry, Vol. 153, No. 6, 1996, pp. 799-805.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.