A Spectroscopic Approach to Assess Heavy Metals Contents of the Mine Waste of Jalta and Bougrine in the North of Tunisia


Near InfraRed Spectroscopy (NIRS) has become an extremely important analytical technique in recent years and been applied in various geoscience areas such as mineral exploration and environmental studies. It is used for studying the physico-chemical properties of earth materials by enabling the interpretation of mineral composition and the study of its variability based on the diagnostic of spectral features. In this research, the application of laboratory reflectance spectroscopy in assessing heavy metals pollution is investigated. The potential use of reflectance spectroscopy in detecting Fe-related and clay minerals as well as the quantitative characterization of pollutants is studied for the mine waste of Jalta and Bougrine in the North of Tunisia. Mining activities of lead/Zn, have led to extensive pollution. The analysis of geochemical results outlined the level and spatial pattern of pollutants concentration. Results of the study showed that a relationship exists between reflectance spectra and geochemical measures of pollutants. The Spectral interpretation of Fe-related minerals and clay minerals showed that they are related to the pollutants and can be used as indirect spectral indicators of the pollution. The Fe-minerals include: jarosite, goethite, hematite/goethite, and hematite; clay minerals and feature-less (aspectral) materials. A direct quantitative relationship between pollutants and spectral parameters shows that Pb-Zn-Mn are the best correlated with a ratio of 610/500 nm range while Ni-Cr have a best correlation with a slope around 980 nm. Outputs from Partial Least Square Regression (PLSR) confirmed these relationships and also indicated that spectral parameters and reflectance values within 400 - 2500 nm range can better predict the contamination for Mn, Pb and Zn than for Ni and Cr but not for Fe, Cu, Cd, EC and pH.

Share and Cite:

S. Gannouni, N. Rebai and S. Abdeljaoued, "A Spectroscopic Approach to Assess Heavy Metals Contents of the Mine Waste of Jalta and Bougrine in the North of Tunisia," Journal of Geographic Information System, Vol. 4 No. 3, 2012, pp. 242-253. doi: 10.4236/jgis.2012.43029.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Fritze, P. Jarvinen and R. Hiukka, “Near-Infrared Characteristics of Forest Humus Are Correlated with Soil Respiration and Micro Bial Biomass in Burnt Soil,” Biology and Fertility of Soils, Vol. 18, No. 1, 1994, pp. 80- 82. doi:10.1007/BF00336449
[2] A. Davies, “Uncertainty Testing in PLS Regression, Spectroscopy Europe,” Norwich near Infrared Consultancy, 2001.
[3] R. N. Clark, “Spectroscopy off Rock’n’rolls and Minerals, and Principles off Spectroscopy,” Remote Sensing for the Earth Sciences, Vol. 3, 1999, pp. 3-58.
[4] D. F. Malley, “Near-Infrared Spectroscopy as a Potential Method for Routine Sediment Analysis to Improve Rapidity and Efficiency,” Water Science and Technology, Vol. 37, No. 6-7, 1998, pp. 181-188. doi:10.1016/S0273-1223(98)00197-8
[5] M. Confalonieri, F. Fornasier, A. Ursino, F. Boccardi, B. Pintus and M. Odoardi, “The Potential of Near-Infrared Reflectance Spectroscopy as a Tool for the Chemical Characterisation of Agricultural Soils,” Journal of near Infrared Spectroscopy, Vol. 9, No. 2, 2001, pp. 123-131. doi:10.1255/jnirs.299
[6] D. C. Slaughter, M. G. Pelletier and S. K. Upadhyaya, “Sensing Soil Moisture Using NIR Spectroscopy,” Applied Engineering in Agriculture, Vol. 17, No. 2, 2001, pp. 241-247.
[7] G. D. Smith, A. Jervis, M. Lennartsson and W. F. Bourne, “Laboratory Methods of Estimating Potentially Mineralizable Nitrogen in Organic Potting Mixes. II. Development of near Infrared Reflectance Spectroscopy Method,” Communications in Soil Science and Plant Analysis, Vol. 32, 2001, pp. 2769-2781. doi:10.1081/CSS-120000960
[8] C. Marcin, M. Niklińska and F. Beese, “Near-Infrared Spectroscopy for Analysis of Chemical and Microbiological Properties of Forest Soil Organic Horizons in a Heavy-Metal-Polluted Area,” Biology and Fertility of Soils, Vol. 44, No. 1, 2002, pp. 171-180.
[9] G. W. McCarty, J. B. Reeves III, V. B. Reeves, R. F. Follet and J. M. Kimble, “Mid-Infrared and Nearinfrared Diffuse Reflectance Spectroscopy for Soil Carbon Measurement,” Soil Science Society of America Journal, Vol. 66, No. 2, 2002, pp. 640-646. doi:10.2136/sssaj2002.0640
[10] D. F. Malley, P. D. Martin, L. M. McClintock, L. Yesmin, R. G. Eilers and P. Haluschak, “Feasibility of Analyzing Canadian Prairie Agricultural Soils by Near Infrared Reflectance Spectroscopy,” In: A. M. C. R. Giangiacomo, Ed., Near Infrared Spectroscopy: Proceedings of International Conference, 9th, Verona, Italy, June 1999, NIR Publ., Chichester, UK, 2000, pp. 579-585.
[11] T. Kemper and S. Sommer, “Estimate of Heavy Metal Contamination in Soils after a Mining Accident Using Reflectance Spectroscopy,” Environmental Science & Technology, Vol. 36, No. 12, 2002, pp. 2742-2747. doi:10.1021/es015747j
[12] D. F. Malley and P. C. Williams, “Use of Near-Infrared Reflectance Spectroscopy in Prediction of Heavy Metals in Freshwater Sediment by Their Association with Organic Matter,” Environmental Science & Technology, Vol. 31, No. 12, 1997, pp. 3461-3467. doi:10.1021/es970214p
[13] P. Sainfeld, “Les g?tes plombo –zincifères de la Tunisie,” Annales des mines et de la géologie N 9, 1952, 252 p.
[14] G. Roussev, B. Radivoev and A. Papov, “Gisement de Plomb de Jalta,” Rapport Géologique, Compagne de Recherche 1974-1975. Société Tunisienne d’Expansion Minière. Convention de Renouvellement des Réserves des Mines en Activité du 11.06.1974, Technoexportstroy, Bulgarproremi, Bulgarie, 1976, 101 p.
[15] S. Boussen, “Impacts des Rejets de la Mine de Jalta sur la Distribution du Plomb et de Zinc dans l’Environnement Pédologique de la Région de Ghezala (Mateur),” Master en Géologie, Faculté des Sciences de Tunis El Manar, 2004, 87 p.
[16] J. Massin, “Mine of Bougrine-Rapport New,” ONM, Tunis, 1972.
[17] A. Guedria, “Comportement des Métaux (Pb-Zn) dans des sols Encroutés par le Calcaire (Région de Bougrine, Tunisie): Application à la Prospection Géochimique de ces métaux,” Thèse en Géologie, Université d’Orléans, 1981, 135 p.
[18] A. Sebai, “Impacts des Rejets Miniers sur l’Environnement Cas des Bassins versants des Oueds Méllègue et Tessa (Tunisie Septentrionale),” Thèse, Faculté des Science de Tunis, 2007, 259 p.
[19] Mr. Thompson, “Analytical Methods in Applied Environmental Geochemistry,” Applied Environmental Geochemistry, Academic Close Inc., London, 1983, 501 p.
[20] F. R. Siegel, “Environmental Geochemistry off Potentially Toxic Metals,” Springer-Verlag, Berlin, 2002.
[21] S. Wold, Mr. Sjostrom and L. Eriksson, “PLS-Regression: BASIC Tool off Chemometrics Has,” Chemometrics and Intelligent Systems Laboratory, Vol. 58, 2001, pp. 109- 130.
[22] L. Wang, Q. Z. Flax, D. Jia, H. S. Shi and X. H. Huang, “Analysis one Possibilities of Multispectral Dated for Quantitative Retrieving Soil Nutrition Element Content,” Department off Earth Sciences, Nanjing University, Direct Access science 2009, 2007.
[23] E. Ben-Dor and A. Banin, “Near Infrared Analysis Have Has Rapid Method to Simultaneously Evaluate Several Soil Properties,” American Newspaper off Soil Society Science, Vol. 159, 1995, pp. 259-269
[24] E. Ben-Dor, K. Patkin, A. Banin and A. Karnieli, “Mapping off Several Soil Properties Using DAIS- 7915 Hyperspectral Scanner Dated A Puts Study Over Clayey Soils in Israel,” International Newspaper off Remote Sensing, Vol. 26, No. 6, 2002, pp. 1043-1062
[25] E. Ben-Dor, N. R. Goldlshleger, Y. Benyamini, Mr. Agassi and D. Blumberg, “Spectral the Reflectance Properties off Soil Structural Crust in the 1.2-2.5 μm Spectral Area,” Soil Science Society American Newspaper, Vol. 67, No. 1, 2003, pp. 289-294. doi:10.2136/sssaj2003.0289
[26] S. Estifanos, “Spectral Indicator for Assessing Pollution in Epithermal Gold Mining Area off Radalquilar Spain,” Thesis, in the International Institutes for Geo-Information Science and Earth Observation, Spain, 2006, 90 p.
[27] C. Gomez, C. Delacourt, P. German, P. Ledru and R. Wackerle, “Using ASTER Remote Sensing Dated Set for Geological Mapping in Namibia,” Physics and Chemistry of the Earth, Vol. 30, No. 1-3, 2005, pp. 97-108.
[28] L. Kooistra, R. Wehrens, R. S. E. W. Leuven and L. M. C. Buydens. “Possibilities of Visible near Infrared Spectroscopy for the Assessment of Soil Contamination in River Floodplains,” Analytica Chimica Acta, Vol. 446, No. 1-2, 2001, pp. 97-105. doi:10.1016/S0003-2670(01)01265-X
[29] L. Kooistra, “Incorporating Spatial Variability in Ecological Risk Assessment of Contaminated River Flood Plains,” PhD Thesis, Radbound University Nijmengen, 2004, 171 p.
[30] M. I. Luleva, “Identification off Soil Property Variation Using Spectral and Statistical Analyses one Field and ASTER Dated. With Box Study off Tunisia,” Thesis, International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands, 2007, 101 p.
[31] K. Thomas and S. Stefan, “Estimate off Heavy Metal Contamination in Soils after has Mining Accident Using Reflectance Spectroscopy,” Environmental Science and Technology, Vol. 36, No. 12, 2002, pp. 2742-2747. doi:10.1021/es015747j
[32] Y. L. Weng, P. Gong and Z. L. Zhu, “Soil Salt Content Estimate in the Yellow to Rivet Satellite Delta with Hyperspectral Dated,” Canadian Journal of Remote sensing, Vol. 34, No. 3, 2008, pp. 259-270.
[33] Y. Wu, J. Chen, X. Wu, Q. Tian and J. Ji, “Feasibility of Reflectance Spectroscopy for the Assessment of Soil Mercury Contamination,” Environmental Science & Technology, Vol. 39, No. 3, 2005, pp. 873-878. doi:10.1021/es0492642
[34] Y. Wu, J. Chen, X. Wu, Q. Tian, J. Ji and Z. Qin, “Possibilities of Reflectance Spectroscopy for the Assessment of Contaminant Elements in Suburban Soils,” Applied Geochemistry, Vol. 20, No. 6, 2005, pp. 1051-1059. doi:10.1016/j.apgeochem.2005.01.009
[35] Y. Z. Wu, J. Chen, J. F. Ji, P. Gong, Q. L. Liao, Q. J. Tian, H. R. Ma, “A Mechanism Study of Reflectance Spectroscopy for Investigating Heavy Metals in Soils,” Soil Science Society of America Journal, Vol. 71, 2007, pp. 918-926.
[36] G. A. Swayze and R. Clark, “Spectral Identification off Minerals Using Imaging Spectrometry Data: Evaluating the Effects off Spectral Signal to Noise and Resolution Using the Tricorder Algorithm: In Summaries off the Fifth Annual JPL airborne Earth Science Workshop,” JPL Publication 95-1, 1995, pp. 157-158.
[37] G. A. Swayze, R. N. Clark, K. S. Smith, P. L. Hageman, S. J. Sutley, R. M. Pearson, G. S. Rust, P. H. Briggs, A. L. Meier, M. J. Singleton and S. Roth, “Using Imaging Spectroscopy as Screening Tool for Evaluating Sources of Acid Mine Drainage: Ground Truth from the California Gulch Superfund Site at Leadville Colorado,” Jet Propulsion Laboratory Pub. 97-21, 1, 1998, pp. 385-389.
[38] G. A. Swayze, et al., “Using Imaging Spectroscopy to Map Acidic Undermines Waste,” Environmental Science and Technology, Vol. 34, No. 1, 2000, pp. 47-54. doi:10.1021/es990046w
[39] G. R. Hunt, J. W. Salisbury and C. J. Lenhoff, “Visible and Near-Infrared Spectra of Minerals and Rocks: Halides, Phosphates, Arsenates, Vanadates and Borates,” Modern Geology, Vol. 3, 1971, pp. 121-132.
[40] J. A. M. Demattê, R. C. Campos, M. C. Alves, P. R. Fiorio and M. R. Nanni, “Visible-NIR Reflectance: A New Approach on Soil Evaluation,” Geoderma, Vol. 121, No. 1-2, 2004, pp. 95-112. doi:10.1016/j.geoderma.2003.09.012

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.