[1]
|
Appel, K., Haken, W., & Koch, J. (1977). Every planar map is four colorable. Illinois Journal of Mathematics, 21, 439-567.
|
[2]
|
Ayer, A. J. (1936). Language, truth, and logic. London: Gollancz.
|
[3]
|
Bishop, E. (1975). The crises in contemporary mathematics. Historia Mathematica, 2, 505-517. doi:10.1016/0315-0860(75)90113-5
|
[4]
|
G?del, K. (1944). Russell’s mathematical logic. In P. Benacerraf, & H. Putnam (Eds.), Philosophy of mathematics (2nd ed., pp. 447-469). Cambridge: Cambridge University Press.
|
[5]
|
Hilbert, D. (1926). über das unendliche. Mathematische Annalen, 95, 161-190. doi:10.1007/BF01206605
|
[6]
|
Leacock, S. (1911). Gertrude the governess or simple seventeen. In: J. Lane (Ed.), Nonsense Novels (New ed.), London: New York Review Book.
|
[7]
|
Lewis, D. (1993). Mathematics is megethology. Philosophia Mathematica, 3, 3-23. doi:10.1093/philmat/1.1.3
|
[8]
|
Shapiro, S. (2000). Philosophy of mathematics. Oxford: Oxford Universit Press. doi:10.1093/0195139305.001.0001
|
[9]
|
Russell, B. (1912). The problems of philosophy. London: Williams and Norgate.
|
[10]
|
Szabó, L. E. (2003). Formal systems as physical objects: A physicalist account of mathematical truth. International Studies in the Philosophy of Science, 17, 117-125. doi:10.1080/0269859031000160568
|
[11]
|
Szabó, L. E. (2009). How can physics account for mathematical truth? Preprint, URL (last checked 26 January 2012).
http://philsci-archive.pitt.edu/archive/00005338/
|
[12]
|
Szabó, L. E. (2010). Lecture notes, philosophy of mathematics. Budapest: E?tv?s Universty.
|
[13]
|
Tymoczko, T. (1979). The four-color problem and its philosophical significance. Journal of Philosophy, 76, 57-83. doi:10.2307/2025976
|
[14]
|
Wiles, A. (1995). Modular elliptic curves and Fermat’s Last Theorem. Annals of Mathematics, 141, 443-551. doi:10.2307/2118559
|