[1]
|
Riddall, D.R., Leach, M.J. and Garthwaite, J. (2006) A novel drug binding site on voltage-gated sodium channels in rat brain. Molecular Pharmacology, 69, 278-287. doi:10.1124/mol.105.015966
|
[2]
|
Zsila, F. and Iwao, Y. (2007) The drug binding site of human α1-acid glycoprotein: Insight from induced circular dichroism and electronic absorption spectra. Biochimica et Biophysica Acta, General Subjects, 1770, 797-809. doi:10.1016/j.bbagen.2007.01.009
|
[3]
|
Barasoain, I., Matesanz, R., Maccari, G., Trigili C., Mori, M., et al. (2010) Probing the pore drug binding site of Microtubules with fluorescent taxanes: Evidence of two binding poses. Chemistry &Biology, 17, 243-253.
doi:10.1016/j.chembiol.2010.02.006
|
[4]
|
Messori, L., Piccioli, F., Gabrielli, S., Orioli, P., Angelonia, L. and Bugnob, C.D. (2002) The disaccharide anthracycline MEN 10755 binds human serum albumin to a non-classical drug binding site. Bioorganic &Medicinal Chemistry, 10, 3425-3430.
doi:10.1016/S0968-0896(02)00265-1
|
[5]
|
Chen, K., Huzil, J.T., Freedman, H., Ramachandran, P., Antoniou, A., Tuszynski, J.A., et al. (2008) Identification of tubulin drug binding sites and prediction of relative differences in binding affinities to tubulin isotypes using digital signal processing. Journal of Molecular Graphics &Modelling, 27, 497-505.
doi:10.1016/j.jmgm.2008.09.001
|
[6]
|
Fuller, J.C., Burgoyne, N.J. and Jackson, R.M. (2009) Predicting druggable binding sites at the protein-protein interface. Drug Discovery Today, 14, 155-161.
doi:10.1016/j.drudis.2008.10.009
|
[7]
|
Capra, J.A., Laskowski, R.A., Thornton, J.M., Singh, M. and Funkhouser, T.A. (2009) Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. Plos Computational Biology, 5, e1000585. doi:10.1371/journal.pcbi.1000585
|
[8]
|
Nayal, M. and Honig, B. (2006) On the nature of cavities on protein surfaces: Application to the identification of drug-binding sites. Proteins: Structure, Function, and Bioinformatics, 63, 892-906. doi:10.1002/prot.20897
|
[9]
|
Perola, E., Walters, W.P. and Charifson, P.S. (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins: Structure, Function, and Bioinformatics, 56, 235- 249. doi:10.1002/prot.20088
|
[10]
|
Ghersi, D. and Sanchez, R. (2009) Improving accuracy and efficiency of blind protein-ligand docking by focusing on predicted binding sites. Proteins: Structure, Function, and Bioinformatics, 74, 417-424.
doi:10.1002/prot.22154
|
[11]
|
Thangudu, R.R., Tyagi, M., Shoemaker, B.A., Bryant, S.H., Panchenko, A.R. and Madej, T. (2010) Knowledge-based annotation of small molecule binding sites in proteins. BMC Bioinformatics, 11, 365.
doi:10.1186/1471-2105-11-365
|
[12]
|
Laurie, A.T.R. and Jackson, R.M. (2006) Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Current Protein and Peptide Science, 7, 395-406.
doi:10.2174/138920306778559386
|
[13]
|
Berman, H.M., Westbrook, J., Feng, Z.K., Gilliland, G., Bhat, T.N., Weissig, H., et al. (2000) The protein data bank. Nucleic Acids Research, 28, 235-242.
doi:10.1093/nar/28.1.235
|
[14]
|
Altschul, S.F., Madden, T.L., A.A., J.H., Z. Zhang, Miller, W. and Lipman, D.J. (1997) Gapped BLAST and PSI- BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402.
doi:10.1093/nar/25.17.3389
|
[15]
|
Wu, J.S., Liu, H.D., Duan, X.Y., Ding, Y., Wu, H.T., Bai, Y.F., et al. (2009) Prediction of DNA-binding residues in proteins from amino acid sequences using a random forest model with a hybrid feature. Bioinformatics, 25, 30-35. doi:10.1093/bioinformatics/btn583
|
[16]
|
Wang Y., Xue, Z., Shen, G. and Xu, J. (2008) PRINTR: Prediction of RNA binding sites in proteins using SVM and profiles. Amino Acids, 35, 295-302.
doi:10.1007/s00726-007-0634-9
|
[17]
|
Zhang T., Zhang, H., Chen, K., Shen, S.Y., Ruan, J.S. and Kurgan, L. (2008) Accurate sequence-based prediction of catalytic residues. Bioinformatics, 24, 2329-2338.
doi:10.1093/bioinformatics/btn433
|
[18]
|
Kumar, M., Gromiha, M.M. and Raghava, G.P.S. (2008) Prediction of RNA binding sites in a protein using SVM and PSSM profile. Proteins: Structure, Function, and Bioinformatics, 71, 189-194. doi:10.1002/prot.21677
|
[19]
|
Ahmad, S. and Sarai, A. (2005) PSSM-based prediction of DNA binding sites in proteins. BMC Bioinformatics, 6, 33. doi:10.1186/1471-2105-6-33
|
[20]
|
Chauhan, J.S., Mishra, N.K. and Raghava, G.P.S. (2009) Identification of ATP binding residues of a protein from its primary sequence. BMC Bioinformatics, 10, 434.
doi:10.1186/1471-2105-10-434
|
[21]
|
Kaur, H. and Raghava, G.P.S. (2003) Prediction of b-turns in proteins from multiple alignment using neural network. Protein Science, 12, 627-634. doi:10.1110/ps.0228903
|
[22]
|
Garg, A., Kaur, H. and Raghava, G.P.S. (2005) Real value prediction of solvent accessibility in proteins using multiple sequence alignment and secondary structure. Proteins, 61, 318-324. doi:10.1002/prot.20630
|
[23]
|
Cheng, C.W., Su, E.C., Hwang, J., Sung, T.Y. and Hsu, W.L. (2008) Predicting RNA-binding sites of proteins using support vector machines and evolutionary information. BMC Bioinformatics, 9, S6.
doi:10.1186/1471-2105-9-S12-S6
|
[24]
|
Wang, C.C., Fang, Y.P., Xiao, J.M. and Li, L.M. (2011) Identification of RNA-binding sites in proteins by integrating various sequence information. Amino Acids, 40, 239-248. doi:10.1007/s00726-010-0639-7
|
[25]
|
Hayat, M., Khan, A. (2012) MemHyb: Predicting membrane protein types by hybridizing SAAC and PSSM. Journal of Theoretical Biology, 292, 93-102.
doi:10.1016/j.jtbi.2011.09.026
|
[26]
|
Li, D., Jiang, Z., Yu, W. and Du, L. (2010) Predicting caspase substrate cleavage sites based on a hybrid SVM- PSSM method. Protein and Peptide Letters, 17, 1566-1571.
|
[27]
|
Mundra, P., Kumar, M., Kumar, K.K., Jayaraman, V.K. and Kulkarni, B.D. (2007) Using pseudo amino acid composition to predict protein subnuclear localization: Approached with PSSM. Pattern Recognition Letters, 28, 1610-1615. doi:10.1016/j.patrec.2007.04.001
|
[28]
|
Shen, H.B. and Chou, K.C. (2007) Nuc-PLoc: A new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein engineering. Design & Selection, 20, 561-567.
doi:10.1093/protein/gzm057
|
[29]
|
Chou, K.C., Wu, Z.C. and Xiao, X. (2011) iLoc-Euk: A multi-label classifier for predicting the subcellular localization of singleplex and multiplex eukaryotic proteins. PLoS ONE, 6, e18258. doi:10.1371/journal.pone.0018258
|
[30]
|
Wu, Z.C., Xiao, X. and Chou, K.C. (2011) iLoc-plant: A multi-label classifier for predicting the subcellular localization of plant proteins with both single and multiple sites. Molecular Biosystems, 7, 3287-3297.
doi:10.1039/c1mb05232b
|
[31]
|
Chou, K.C. and Shen, H.B. (2007) MemType-2L: A Web server for predicting membrane proteins and their types by incorporating evolution information through Pse- PSSM. Biochemical and Biophysical Research Communications, 360, 339-345. doi:10.1016/j.bbrc.2007.06.027
|
[32]
|
Wu, Z.C., Xiao, X. and Chou, K.C. (2012) iLoc-Gpos: A multi-layer classifier for predicting the subcellular localization of singleplex and multiplex gram-positive bacterial proteins. Protein & Peptide Letters, 19, 4-14.
|
[33]
|
Chou, K.C., Wu, Z.C. and Xiao, X. (2012) iLoc-Hum: Using accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Molecular Biosystems, 8, 629-641.
doi:10.1039/c1mb05420a
|
[34]
|
Vapnik, V.N. (1998) Statistical learning theory. Wiley, New York.
|
[35]
|
Chou, K.C. and Cai, Y.D. (2002) Using functional domain composition and support vector machines for prediction of protein subcellular location. Journal of Biological Chemistry, 277, 45765-45769.
doi:10.1074/jbc.M204161200
|
[36]
|
Cai, Y.D., Liu X.J., Xu, X.B. and Chou, K.C. (2002) Support vector machines for predicting HIV protease cleavage sites in protein. Journal of Computational Che- mistry, 23, 267-274. doi:10.1002/jcc.10017
|
[37]
|
Cai, Y.D., Zhou, G.P. and Chou, K.C. (2003) Support vector machines for predicting membrane protein types by using functional domain composition. Biophysical Journal, 84, 3257-3263.
doi:10.1016/S0006-3495(03)70050-2
|
[38]
|
Petrova, N.V. and Wu, C.H. (2006) Prediction of catalytic residues using support vector machine with selected protein sequence and structural properties. BMC Bioinformatics, 7, 312. doi:10.1186/1471-2105-7-312
|
[39]
|
Pugalenthi, G., Kumar, K.K., Suganthan, P.N. and Gangal, R. (2008) Identification of catalytic residues from protein structure using support vector machine with sequence and structural features. Biochemical and Biophysical Research Communications, 367, 630-634.
doi:10.1016/j.bbrc.2008.01.038
|
[40]
|
Li, S.L., Li, H., Li, M.F., Shyr, Y., Xie, L. and Li, Y.X. (2009) Improved prediction of lysine acetylation by support vector machines. Protein & Peptide Letters, 16, 977- 983. doi:10.2174/092986609788923338
|
[41]
|
Li, Z.C., Zhou, X., Dai, Z. and Zou, X.Y. (2011) Identification of protein methylation sites by coupling improved ant colony optimization algorithm and support vector machine. Analytical Chimica Acta, 703, 163-171.
|
[42]
|
Dietterich, T.G. (2000) Ensemble methods in machine learning. Lecture Notes in Computer Science, 1857, 1-15. doi:10.1007/3-540-45014-9_1
|
[43]
|
Kuncheva, L.I., Skurichina, M. and Duin, R.P.W. (2002) An experimental study on diversity for bagging and boosting with linear classifiers. Inform Fusion, 3, 245- 258. doi:10.1016/S1566-2535(02)00093-3
|
[44]
|
Caragea, C., Sinapov, J., Silvescu, A., Dobbs, D. and Honavar, V. (2007) Glycosylation site prediction using ensembles of support vector machine classifiers. BMC Bioinformatics, 8, 438. doi:10.1186/1471-2105-8-438
|
[45]
|
Xu Y., Wang, X.B., Ding, J., Wu, L.Y. and Deng, N.Y. (2010) Lysine acetylation sites prediction using an ensemble of support vector machine classifiers. Journal of Theoretical Biology, 264, 130-135.
doi:10.1016/j.jtbi.2010.01.013
|
[46]
|
Swets, J.A. (1988) Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.
doi:10.1126/science.3287615
|
[47]
|
Bradley, A.P. (1997) The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition, 30, 1145-1159.
doi:10.1016/S0031-3203(96)00142-2
|
[48]
|
Chou, K.C. and Zhang, C.T. (1995) Review: Prediction of protein structural classes. Critical Reviews in Biochemistry and Molecular Biology, 30, 275-349.
doi:10.3109/10409239509083488
|
[49]
|
Chou, K.C. (2011) Some remarks on protein attribute prediction and pseudo amino acid composition (50th Anniversary Year Review). Journal of Theoretical Biology, 273, 236-247. doi:10.1016/j.jtbi.2010.12.024
|
[50]
|
Chen, C., Chen, L., Zou, X. and Cai, P. (2009) Prediction of protein secondary structure content by using the concept of Chou’s pseudo amino acid composition and support vector machine. Protein & Peptide Letters, 16, 27-31.
doi:10.2174/092986609787049420
|
[51]
|
Ding, H., Luo, L. and Lin, H. (2009) Prediction of cell wall lytic enzymes using Chou’s amphiphilic pseudo amino acid composition. Protein & Peptide Letters, 16, 351-355. doi:10.2174/092986609787848045
|
[52]
|
Esmaeili, M., Mohabatkar, H. and Mohsenzadeh, S. (2010) Using the concept of Chou’s pseudo amino acid composition for risk type prediction of human papillomaviruses. Journal of Theoretical Biology, 263, 203-209.
doi:10.1016/j.jtbi.2009.11.016
|
[53]
|
Georgiou, D.N., Karakasidis, T.E., Nieto, J.J. and Torres, A. (2009) Use of fuzzy clustering technique and matrices to classify amino acids and its impact to Chou’s pseudo amino acid composition. Journal of Theoretical Biology, 257, 17-26. doi:10.1016/j.jtbi.2008.11.003
|
[54]
|
Gu, Q., Ding, Y.S. and Zhang, T.L. (2010) Prediction of G-protein-coupled receptor classes in low homology using Chou’s pseudo amino acid composition with approximate entropy and hydrophobicity patterns. Protein & Peptide Letters, 17, 559-567.
doi:10.2174/092986610791112693
|
[55]
|
Guo, J., Rao, N., Liu, G., Yang, Y. and Wang, G. (2011) Predicting protein folding rates using the concept of Chou’s pseudo amino acid composition. Journal of Computational Chemistry, 32, 1612-1617.
doi:10.1002/jcc.21740
|
[56]
|
Jiang, X., Wei, R., Zhang, T.L. and Gu, Q. (2008) Using the concept of Chou’s pseudo amino acid composition to predict apoptosis proteins subcellular location: An approach by approximate entropy. Protein & Peptide Letters, 15, 392-396. doi:10.2174/092986608784246443
|
[57]
|
Lin, H. (2008) The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. Journal of Theoretical Biology, 252, 350-356. doi:10.1016/j.jtbi.2008.02.004
|
[58]
|
Lin, J. and Wang, Y. (2011) Using a novel AdaBoost algorithm and Chou’s pseudo amino acid composition for predicting protein subcellular localization. Protein & Peptide Letters, 18, 1219-1225.
doi:10.2174/092986611797642797
|
[59]
|
Mei, S. (2012) Multi-kernel transfer learning based on Chou’s PseAAC formulation for protein submitochondria localization. Journal of Theoretical Biology, 293, 121- 130. doi:10.1016/j.jtbi.2011.10.015
|
[60]
|
Mohabatkar, H. (2010) Prediction of cyclin proteins using Chou’s pseudo amino acid composition. Protein & Peptide Letters, 17, 1207-1214.
doi:10.2174/092986610792231564
|
[61]
|
Mohabatkar, H., Mohammad Beigi, M. and Esmaeili, A. (2011) Prediction of GABA(A) receptor proteins using the concept of Chou’s pseudo-amino acid composition and support vector machine. Journal of Theoretical Biology, 281, 18-23. doi:10.1016/j.jtbi.2011.04.017
|
[62]
|
Mohammad Beigi, M., Behjati, M. and Mohabatkar, H. (2011) Prediction of metalloproteinase family based on the concept of Chou’s pseudo amino acid composition using a machine learning approach. Journal of Structural and Functional Genomics, 12, 191-197.
doi:10.1007/s10969-011-9120-4
|
[63]
|
Nanni, L., Lumini, A., Gupta, D. and Garg, A. (2012) Identifying bacterial virulent proteins by fusing a set of classifiers based on variants of Chou’s pseudo amino acid composition and on evolutionary information. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9, 467-475.
|
[64]
|
Qiu, J.D., Huang, J.H., Shi, S.P. and Liang, R.P. (2010) Using the concept of Chou’s pseudo amino acid composition to predict enzyme family classes: An approach with support vector machine based on discrete wavelet transform. Protein & Peptide Letters, 17, 715-722.
doi:10.2174/092986610791190372
|
[65]
|
Sahu, S.S. and Panda, G. (2010) A novel feature representation method based on Chou’s pseudo amino acid composition for protein structural class prediction. Computational Biology and Chemistry, 34, 320-327.
doi:10.1016/j.compbiolchem.2010.09.002
|
[66]
|
Zou, D., He, Z., He, J. and Xia, Y. (2011) Supersecondary structure prediction using Chou’s pseudo amino acid composition. Journal of Computational Chemistry, 32, 271-278. doi:10.1002/jcc.21616
|
[67]
|
Chou, K.C. and Shen, H.B. (2009) Review: Recent advances in developing web-servers for predicting protein attributes. Natural Science, 2, 63-92.
doi:10.4236/ns.2009.12011
|
[68]
|
Chou, K.C. and Shen, H.B. (2008) Cell-PLoc: A package of Web servers for predicting subcellular localization of proteins in various organisms (updated version: Cell- PLoc 2.0: An improved package of web-servers for predicting subcellular localization of proteins in various organisms. Natural Science, 2, 1090-1103.
doi:10.1038/nprot.2007.494
|