[1]
|
Zuckerkandl, E. and Pauling, L.B. (1962) Molecular disease, evolution, and genetic heterogeneity. In: M. Kasha and B. Pullman, Ed., Horizons in Biochemistry, New York Academic, New York, 189-225.
|
[2]
|
Dayhoff, M.O., Park, C.M. and McLaughlin, P.J. (1977) Building a phylogenetic trees: Cytochrome C. In: Dayhoff, M.O. Ed., Atlas of protein sequence and structure. National Biomedical Foundation, Washington, D. C., 5, 7-16.
|
[3]
|
Sogin, M.L., Elwood, H.J. and Gudeson, J.H. (1986) Evolutionary diversity of eukaryotic small subunit rRNA genes. Proceedings of the National Academy Sciences, 83, 1383-1387.
|
[4]
|
DePouplana, L., Turner, R.J., Steer, B.A. and Schimmel, P. (1998) Genetic code origins: tRNAs older than their synthetases. Proceedings of the National Academy Sciences, 95(19), 11295-11300.
|
[5]
|
Doolittle, W.F. and Brown, J.R. (1994) Tempo, mode, the progenote, and the universal root. Proceedings of the Na-tional Academy Sciences, 91(15), 6721-6728.
|
[6]
|
Maizels, N. and Weiner, A.M. (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proceed-ings of the National Academy Sciences, 91(15), 6729-6734.
|
[7]
|
Sakaguchi, M., Nakayama, T., Hashimoto, T. and Inouye, I. (2006) Phylogeny of the centrohelida inferred from SSU rRNA, tubulin, and actin genes. Journal of Molecu-lar Evolution, 61(6), 765-775.
|
[8]
|
Sanger, F. and Coulson, A.R. (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94(3), 441-446.
|
[9]
|
Maxam, A.M. and Gilbert, W. (1977) A new method for sequencing DNA. Proceedings of the National Academy Sciences, 74(2), 560-564.
|
[10]
|
Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496-512.
|
[11]
|
Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., et al.(2001) Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921.
|
[12]
|
Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., et al. (2001) The sequence of the hu-man genome. Science, 291(5507), 1304-1351.
|
[13]
|
Sorimachi, K. (2009) Evolution from primitive life to Homo sapiens based on visible genome structures: The amino acid world. Natural Science, 1, 107-119.
|
[14]
|
Okayasu, T. and Sorimachi, K. (2008) Organisms can essentially be classified according to two codon patterns. Amino Acids, 36(2), 261-271.
|
[15]
|
Watson, J.D. and Crick, F.H.C. (1953) Genetical implica-tions of the structure of deoxyribonucleic acid. Nature, 171(4361), 964-967.
|
[16]
|
Chargaff, E. (1950) Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experi-mentia, 6(6), 201-209.
|
[17]
|
Rudner, R., Karkas, J.D. and Chargaff, E. (1968) Separa-tion of B. subtilis DNA into complementary strands. 3. Direct analysis. Proceedings of the National Academy Sciences, 60(3), 921-922.
|
[18]
|
Sorimachi, K. (2009) A proposed solution to the historic puzzle of Chargaff’s second parity rule. The Open Ge-nomics Journal, 2(3), 12-14.
|
[19]
|
Sorimachi, K. and Okayasu, T. (2004) An evaluation of evolutionary theories based on genomic structures in Saccharomyces cerevisiae and Encephalitozoon cuniculi. Mycoscience, 45(5), 345-350.
|
[20]
|
Sorimachi, K. and Okayasu, T. (2008) Codon evolution is governed by linear formulas. Amino Acids, 34(4), 661-668.
|
[21]
|
Mitchell, D. and Bridge, R. (2006) A test of Chargaff’s second rule. Biochemical and Biophysical Research Communications, 340(1), 90-94.
|
[22]
|
Nikolaou, C. and Almirantis, Y. (2006) Deviations from Chargaff’s second parity rule in organelle DNA insights into the evolution of organelle genomes. Gene, 381, 34-41.
|
[23]
|
Bell, S.J. and Forsdyke, D.R. (1999) Deviations from Chargaff’s second parity rule with direction of transcrip-tion. The Journal of Theoretical Biology, 197(1), 63-76.
|
[24]
|
Sorimachi, K. and Okayasu, T. (2008) Universal rules governing genome evolution expressed by linear formulas. The Open Genomics Journal, 1(11), 33-43.
|
[25]
|
Glass, J.I., Lefkowitz, E.J., Glass, J.S., Chen, E.Y. and Cassell, G.H. (2000) The complete sequence of the mu-cosal pathogen Ureaplasma urealyticum. Nature, 407(6805), 757-762.
|
[26]
|
Brown, W.M., George, M.Jr. and Wilson, A.C. (1979) Rapid evolution of animal mitochondrial DNA. Proceed-ings of the National Academy Sciences, 76(4), 1967-1971.
|
[27]
|
Sorimachi, K. and Okayasu, T. (2004) Classification of eubacteria based on their complete genome: Where does Mycoplasmataceae belong? Proceedings of the Royal Society of London. B (Supplement), 271(4), S127-S130.
|
[28]
|
Fraser, C.M., Norris, S.J., Weinstock, G.M., White, O., Sutton, G.G., Dodson, R., et al. (1998) Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science, 281(5375), 375-388.
|
[29]
|
Raven, J.A. and Allen, J.F. (2003) Genomics and chlo-roplast evolution: what did cyanobacteria do for plants? Genome Biology, 4(3), 209-215.
|
[30]
|
Gray, M.W., Burger, G. and Lang, B.F. (1999) Mito-chondrial evolution. Science, 283(5407), 1476-1481.
|
[31]
|
Gilbert, W. (1986) The RNA world. Nature, 319, 618.
|
[32]
|
Sorimachi, K. (1999) Evolutionary changes reflected by the cellular amino acid composition. Amino Acids, 17(2), 207-226.
|
[33]
|
Sorimachi, K., Itoh, T., Kawarabayasi, Y., Okayasu, T., Akimoto, K. and Niwa, A. (2001) Conservation of basic pattern of cellular amino acid composition during bio-logical evolution and the putative amino acid composition of primitive life forms. Amino Acids, 21(4), 393-399.
|