The effects of astragalus polysaccharide on zebrafish cell apoptosis and senescence


Astragalus polysaccharide (AP) is the extraction of astragalus, which is a plant used in traditional Chinese herb medicine and may increase an orgainism’s resistance to stress. Several earlier studies in vitro have indicated that AP has anti-aging activities, however the mechanism underlyling these activities was unclear and remained to be elucidated. In this study, Using the zebrafish (Danio rerio), we evaluated molecular mechanism of the effect of AP on zebrafish growth, development and apoptosis. 30 zebrafish embryos (24 hours post fertilization (hpf)) were exposed to varying concentrations of AP (from 0.125 mg/ml to 0. 5 mg/ml) continuously for 3 days. The results of β-galactosidase (SA-β-gal) and acridine orange fluorescence showed that AP can delay zebrafish embryos apoptosis under the concentration of 0.125 mg/ml. In addition, the differential gene expression of AP treated zebrafish embryos was examined by RT-PCR analysis. We found that the gene expression of mdm2 and tert were up-regulated while bax, p21 and p53 gene expression were down-regulated during early apoptosis of the zebrafish embryos mediated by AP. These results demonstrated that AP may play a role during the induction of senescence and this function might by p53-mediated pathway.

Share and Cite:

Xia, G. , Han, X. , Qi, J. , Liu, W. , Song, J. , Qin, J. and Liu, L. (2012) The effects of astragalus polysaccharide on zebrafish cell apoptosis and senescence. American Journal of Molecular Biology, 2, 103-109. doi: 10.4236/ajmb.2012.22011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Ku, H.H. and Sohal, R.S. (1993) Comparison of mitochondrial pro-oxidant generation and anti-oxidant defenses between rat and pigeon: Possible basis of variation in longevity and metabolic potential. Mechanisms of Ageing and Development, 72, 67-76. doi:10.1016/0047-6374(93)90132-B
[2] Sohal, R.S. and Weindruch, R. (1996) Oxidative stress, caloric restriction, and aging. Science, 273, 59-63. doi:10.1126/science.273.5271.59
[3] Finkel, T. and Holbrook, N.J. (2000) Oxidants, oxidative stress and biology of aging. Nature, 408, 239-247. doi:10.1038/35041687
[4] Jafari, M., Felgner, J.S., Bussel, I.I., Hutchili, T., Khodayari, B., Rose, M.R., Vince-Cruz, C. and Mueller, L.D. (2007) Rhodiola: A promising anti-aging Chinese herb. Rejuvenation Research, 10, 587-602. doi:10.1089/rej.2007.0560
[5] Ian, M.S. (2006) Oxidative damage and age-related functional declines. Mechanisms of Ageing and Development, 127,411-423. doi:10.1016/j.mad.2006.01.008
[6] Hayflick, L. and Moorhead, P.S. (1961) The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585-621. doi:10.1016/0014-4827(61)90192-6
[7] Toussaint, O., Medrano, E.E. and Von Zglinicki, T. (2000) Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Journal of Experimental Gerontology, 35,927-945. doi:10.1016/S0531-5565(00)00180-7
[8] Ikegami, R., Zhang J., Rivera-Bennetts A.K. and Yager T.D. (1997) Activation of the metaphase checkpoint and an apoptosis programme in the early zebrafish embryo by treatment with the spindle-destabilising agent nocodazole. Zygote, 5, 329-350. doi:10.1017/S0967199400003919
[9] Zheng, R., Jie, S., Hanchuan, D. and Mouncheng, W., (2005) Characterization and immunomodulating activities of polysaccharide from Lentinus edodes. International Immunopharmacology, 5, 811-820. doi:10.1016/j.intimp.2004.11.011
[10] Chang, I.M. (2001) Anti-aging and health-promoting constituents derived from traditional oriental herbal remedies: Information retrieval using the TradiMed 2000 DB. Annals of the New York Academy of Sciences, 928, 281-286. doi:10.1111/j.1749-6632.2001.tb05657.x
[11] Bastianetto, S. and Quirion, R. (2002) Nutural extracts as possible protective agents of brain aging. Neurobiology of Aging, 23, 891-897. doi:10.1016/S0197-4580(02)00024-6
[12] Berg, D., Youdim, M.B. and Riederer, P. (2004) Redox imbalance. Cell and Tissue Research, 318, 201-213. doi:10.1007/s00441-004-0976-5
[13] Kang, K.A., Lee, K.H., Zhang, R., Piao, M.J., Kang, M.Y., Kwak, Y.S., Yoo, B.S., You, H.J. and Hyun, J.W. (2007) Protective effects of castanopsis cuspidate through activation of ERK and NF-kappaB on oxidative cell death induced by hydrogen peroxide. Journal of Toxicology and Environmental Heath, Part A, 70, 1319-1328. doi:10.1080/15287390701429315
[14] Wong, C.K., Leung, K.N., Fung, K.P. and Choy, Y.M. (1994) Immunomodulatory and anti-tumor polysaccharide. Acta Nutrimenta Sinica, 24, 189-191.
[15] Xu, L. (2009) Research on pharmacological functions and clinical application of astragalus. Modern Medical (in Chinese), 25, 3312-3313.
[16] Huang, N.-L. and Zhang B.-Y. (2009) Research on pharmacological functions and clinical application of astragalus. Strait Pharmaceutical, 21, 137-139.
[17] Chen, J.N. and Fishman M.C. (1996) Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development, 123, 293-302.
[18] Granato, M. and Nusslein-Volhard, C. (1996) Fishing for genes controlling development. Current Opinion in Genetics and Development, 6, 461-468. doi:10.1016/S0959-437X(96)80068-2
[19] Parng, C., Seng, W. L., Semino, C. and McGrath, P. (2002) Zebrafish: A preclinical model for drug screening. ASSAY and Drug Development Technologies, 1, 41-50. doi:10.1089/154065802761001293
[20] Gerhard, G.S., Kauffman, E.J., Wang, X., Stewart, R., Moore, J.L., Kasales, C.J., Demidenko, E. and Cheng, K.C. (2002) Life spans and senescent phenotypes in two strains of zebrafish (Danio rerio), Experimental Gerontolog Experimental Gerontology Experimental Gerontology, 37, 1055-1068. doi:10.1016/S0531-5565(02)00088-8
[21] Keller, E.T. and Muurtha, J.M. (2004) The use of mature zebrafish (Danio rerio) as a model for human aging and disease. Comparative Biochemistry Physiology C: Toxicology and Pharmacology, 138, 335-341.
[22] Tsai, S.B., Tucci, V., Uchiyama, J., Fabian, N.J., Lin, M.C., Bayliss, P.E., Neuberg, D.S., Zhdanova, I.V. and Kishi, S. (2007) Differential effects of genotoxic stress on both concurrent body growth and gradual senescence in the adult zebrafish. Aging Cell, 6, 209-224. doi:10.1111/j.1474-9726.2007.00278.x
[23] Wang, S.-P., Li, X.-J. and Zhang, G.-Z. (2008) Study on optimization of the technology for extraction and purification from astragalus membranaceus. Journal of Molecular Science, 24, 60-65.
[24] Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S.I. and Lee, Y.C. (2005) Carbohydrate analysis by a phenol-sulfuric acid and method in microplate format. Analytical Biochemistry, 339, 69-72. doi:10.1016/j.ab.2004.12.001
[25] Robu, M.E., Arson, J.D., Nasevicius, A., Beiraghi, S., Brenner, C., Farber, S.A. and Ekker, S.C. (2007) p53 activation by knockdown technologies. PLoS Genetics, 3, 787-801.
[26] Rodemann, H.P., Bayreuther, K., Dittmann, F., Albiez, M. and Francz, P.I., (1989) Selective enrichment and biochemical characterization of seven human skin fibroblasts cell types in vitro. Experimental Cell Research, 180, 84-93. doi:10.1016/0014-4827(89)90214-0
[27] Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., Peacocke, M. and Campisi, J. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of National Academy of Sciences of the USA, 92, 9363-9367. doi:10.1073/pnas.92.20.9363
[28] Cao, L., Li, W., Kim, S., Brodie, S.G. and Deng, C.X. (2003) Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes and Development, 17, 201-203. doi:10.1101/gad.1050003
[29] Keyes, W.M., Wu, Y., Vogel, H., Guo, X., Lowe, S.W. and Mills, A.A. (2005) p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Gene and Development, 19, 1986-1999. doi:10.1101/gad.342305
[30] Ikegami, R., Zhang, J., Rivera-Bennetts, A.K. and Yager, T.D. (1997) Activation of the metaphase checkpoint and an apoptosis programme in the early zebrafish embryo by treatment with the spindle-destabilising agent nocodazole. Zygote, 5, 329-350. doi:10.1017/S0967199400003919
[31] Bodnar, A.G., Ouellette, M. and Frolkis, M. (1998) Extension of life-span by introduction of telomerase into normal human cells. Science, 279, 349-352. doi:10.1126/science.279.5349.349
[32] Ben-Porath, I. and Weinberg, R.A. (2004) When cells get stressed: An integrative view of cellular senescence. Journal of Clinical Invest, 113, 8-13.
[33] Meyerson, M. (2000) Role of telomeras in normal and cancer cells. Journal of Clinical Oncology, 18, 2626-2634.
[34] Jaskelioff, M., Muller, F.L., Paik, J.H., Thomas, E., Jiang, S., Adams, A.C., Sahin, E., Kost-Alimova, M., Protopopov, A., Cadinanos, J., Horner, J.W., Maratos-Flier, E. and Depinho, R.A (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 469, 102-106. doi:10.1038/nature09603
[35] Wyllie, F.S., Jones, C.J., Skinner, J.W., Haughton, M.F., Wallis, C., Wynford-Thomas, D., Faragher, R.G. and Kipling, D. (2000) Telomerase prevents the accelerated cell ageing of Werner syndrome fibroblasts. Nature Genet, 24, 16-17. doi:10.1038/71630
[36] Wang, Y. and Li, Y.-D. (2011) Research astragalus and cell on aging. Medical Information (in Chinese), 24, 2168-2169.
[37] Xu, L. (2009) Research on pharmacological functions and clinical application of astragalus. Modern Medical (in Chinese), 25, 3312-3313.
[38] Huang, N.-L. and Zhang, B.-Y. (2009) Research on pharmacological functions and clinical application of astragalus. Strait Pharmaceutical (in Chinese), 21, 137-139.
[39] Stoletov, K., Montel, V., Lester, R.D., Gonias, S.L. and Klemke, R. (2007) High-Resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proceedings of National Academy of Sciences of the USA, 104, 17406-17411. doi:10.1073/pnas.0703446104
[40] Scholz, S., Fischer, S., Gundel, U., Kuster, E., Luckenbach, T. and Voelker, D. (2008) The zebrafish embryo model in environmental risk assessment—Applications beyond acute toxicity testing. Environmental Science and Pollution Research, 15, 394-404. doi:10.1007/s11356-008-0018-z
[41] Levine, A.J. (1997) p53, the cellular gatekeeper for growth and division. Cell, 88, 323-331. doi:10.1016/S0092-8674(00)81871-1
[42] Vousden, K.H. (2000) p53: Death star. Cell, 103, 691-694. doi:10.1016/S0092-8674(00)00171-9
[43] Vogelstein, B., Lane, D. and Levine, A.J. (2000) Surfing the p53 network. Nature, 408, 307-310. doi:10.1038/35042675
[44] Deng, C., Zhang, P., Harper, J.W., Elledge, S.J. and Leder, P. (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell, 82, 675-684. doi:10.1016/0092-8674(95)90039-X
[45] Fridman, J.S. and Lowe, S.W. (2003) Control of apoptosis by p53. Oncogene, 22, 9030-9040. doi:10.1038/sj.onc.1207116
[46] Berghmans, S., Murphey, R.D., Wienholds, E., Neuberg, D., Kutok, J.L., Fletcher, C.D., Morris, J.P., Liu, T.X., Schulte-Merker, S., Kanki, J.P., Plasterk, R., Zon, L.I. and Look, A.T. (2005) tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proceedings of National Academy of Sciences of the USA, 102, 407-412. doi:10.1073/pnas.0406252102

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.