Spontaneous Luminescence Background in Living Nu/Nu Mice


Spontaneous light emission from living animals can overcome the investigated light signals in small animal luminescence imaging. Despite autofluorescence emission is well studied the spontaneous luminescence background is less known and its importance is growing due to the new born imaging techniques like Cerenkov Luminescence Imaging and Radionuclide Luminescence Imaging in which faint sources are often involved. In order to investigate the spontaneous emission we studied the background luminescence in vivo from health Nu/Nu mice in optical imaging acquisitions and we related it with the optical properties of the diet of the animals. In particular luminescence images of mice feed with normal diet used in animal facilities were acquired using a commercial optical imager. The intensity and the spectral features of the luminescence emission from the animal surface after sunshine exposition and after normal lighting laboratory conditions were measured. The same was done with the pellets of food used to feed the animals. We found a background emission from the entire animal surface and localized light sources in the abdominal/lumbar region. Their intensity can be modulated by the light exposition of the animals before the imaging session and decreases along the time when they are put in darkness. The comparison of the luminescence time decay of animals and pellets suggests that the light sources are related to the persistent luminescence of the molecules contained in the food. So ambient exposure before imaging is important for luminescence imaging in order to keep down the background. The optical properties of food are also important and it necessary to check them before to feed the animals not only in fluorescence imaging but also in luminescence imaging.

Share and Cite:

F. Boschi, A. Spinelli, L. Calderan and A. Sbarbati, "Spontaneous Luminescence Background in Living Nu/Nu Mice," Advances in Molecular Imaging, Vol. 2 No. 2, 2012, pp. 5-11. doi: 10.4236/ami.2012.22002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. H. Contag and B. D. Ross, “It’s Not Just about Anatomy: In Vivo Bioluminescence Imaging as an Eyepiece into Biology,” Journal of Magnetic Resonance Imaging, Vol. 16, No. 4, 2002, pp. 378-387. doi:10.1002/jmri.10178
[2] H. Song, K. Shahverdi, D. L. Huso, Y. Wang, J. J. Fox, et al., “An Immunotolerant HER-2/neu Transgenic Mouse Model of Metastatic Breast Cancer,” Clinical Cancer Research, Vol. 14, No. 19, 2008, pp. 6116-6124. doi:10.1158/1078-0432.CCR-07-4672
[3] A. Roda, M. Guardigli, P. Pasini and M. Mirasoli, “Bioluminescence and Chemiluminescence in Drug Screening,” Analytical and Bioanalytical Chemistry, Vol. 377, No. 5, 2003, pp. 826-833. doi:10.1007/s00216-003-2096-6
[4] E. V. Fomicheva, I. I. Turner, T. G. Edwards, J. Hoff, E. Arden, et al., “Double Oxygen-Sensing Vector System for Robust Hypoxia/Ischemia-Regulated Gene Induction in Cardiac Muscle in Vitro and in Vivo,” Molecular Therapy, Vol. 16, No. 9, 2008, pp. 1594-1601. doi:10.1038/mt.2008.136
[5] Y. A. Cao, A. J. Wagers, A. Beilhack, J. Dusich, M. H. Bachmann, et al., “Shifting Foci of Hematopoiesis during Reconstitution from Single Stem Cells,” Proceedings of the National Academy of Sciences of USA, Vol. 101, No. 1, 101, 2004, pp. 221-226. doi:10.1073/pnas.2637010100
[6] S. Ray, R. Paulmurugan, M. R. Patel, B. C. Ahn, L. Wu, et al., “Noninvasive Imaging of Therapeutic Gene Expression Using a Bidirectional Transcriptional Amplification Strategy,” Molecular Therapy, Vol. 16, No. 11, 2008, pp. 1848-1856. doi:10.1038/mt.2008.180
[7] M. Iyer, F. B. Salazar, X. Lewis, L. Zhang, M. Carey, et al., “Noninvasive Imaging of Enhanced Prostate-Specific Gene Expression Using a Two-Step Transcriptional Amplification-Based Lentivirus Vector,” Molecular Therapy, Vol. 10, No. 3, 2004, pp. 545-552. doi:10.1016/j.ymthe.2004.06.118
[8] J. B. Kim, K. Urban, E. Cochran, S. Lee, A. Ang, B. Rice, A. Bata, K. Campbell, R. Coffee, A. Gorodinsky, Z. Lu, H. Zhou, T. Kei Kishimoto and P. Lassota, “Non-Invasive Detection of a Small Number of Bioluminescent Cancer Cells in Vivo,” PLoS ONE, Vol. 5, No. 3, 2010, p. e9364. doi:10.1371/journal.pone.0009364
[9] T. Troy, D. Jekic-McMullen, L. Sambucetti and B. Rice “Quantitative Comparison of the Sensitivity of Detection of Fluorescent and Bioluminescent Reporters in Animal Models”, Molecular Imaging, Vol. 3, No. 1, 2004, pp. 9-23. doi:10.1162/153535004773861688
[10] R. Robertson, M. S. Germanos, C. Li, G. S. Mitchell, S. R. Cherry and M. D. Silva, “Optical Imaging of Cerenkov Light Generation from Positron-Emitting Radiotracers,” Physics in Medicine and Biology, Vol. 54, No. 16, 2009, p. N355. doi:10.1088/0031-9155/54/16/N01
[11] A. E. Spinelli, D. D’Ambrosio, L. Calderan, M. Marengo, A. Sbarbati and F. Boschi, “Cerenkov Radiation Allows in Vivo Optical Imaging of Positron Emitting Radiotracers,” Physics in Medicine and Biology, Vol. 55, No. 2, 2010, pp. 483-495. doi:10.1088/0031-9155/55/2/010
[12] F. Boschi, L. Calderan, D. D’Ambrosio, M. Marengo, A. Fenzi, R. Calandrino, A. Sbarbati and A. E. Spinelli, “In Vivo 18F-FDG Tumour Uptake Measurements in Small Animals Using Cerenkov Radiation,” European Journal of Nuclear Medicine and Molecular Imaging, Vol. 38, No. 1, 2011, pp. 120-127. doi:10.1007/s00259-010-1630-y
[13] C. Li, G. S. Mitchell and S. R. Cherry, “Cerenkov Luminescence Tomography for Small-Animal Imaging,” Optics Letters, Vol. 35, No. 7, 35, 2010, pp. 1109-1111. doi:10.1364/OL.35.001109
[14] Z. Hu, J. Liang, W. Yang, W. Fan, C. Li, X. Ma, X. Chen, X. Ma, X. Li, X. Qu, J. Wang, F. Cao and J. Tian, “Experimental Cerenkov Luminescence Tomography of the Mouse Model with SPECT Imaging Validation,” Optics Express, Vol. 18, No. 24, 2010, pp. 24441-24450. doi:10.1364/OE.18.024441
[15] A. E. Spinelli, C. Kuo, B. W. Rice, R. Calandrino, P. Marzola, A. Sbarbati and F. Boschi, “Multispectral Cerenkov Luminescence Tomography for Small Animal Optical Imaging,” Optics Express, Vol. 19, No. 13, 2011, pp. 12605-12618. doi:10.1364/OE.19.012605
[16] F. Boschi, S. Lo Meo, P. L. Rossi, R. Calandrino, A. Sbarbati and A. E. Spinelli, “Optical Imaging of Alpha Emitters: Simulations, Phantom and in Vivo Results,” Journal of Biomedical Optics, Vol. 16, No. 2, 2011, p. 126011. doi:10.1117/1.3663441
[17] A. E. Spinelli, S. Lo Meo, R. Calandrino, A. Sbarbati and F. Boschi, “Optical Imaging of Tc-99m Based Tracers, in Vitro and in Vivo Results,” Journal of Biomedical Optics, Vol. 16, No. 11, 2011, p. 116023. doi:10.1117/1.3653963
[18] J. Holsa, “Persisstent Luminescence Beats the Afterglow: 400 Years of Persistent Luminescence,” The Electrochemical Society Interface, 2009. http://www.electrochem.org/dl/interface/wtr/wtr09/wtr09_p042-045.pdf

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.