Biodegradable stent


The bare metal stent (BMS) used in the blood vessel caused the restenosis after the operation due to formation and proliferation of neointimal. Recently, as a method to overcome the problems of BMS, drug eluting stent (DES) is developed and being applied to human body which has drug reducing restenosis applied on the metal surface. DES has the advantage of greatly reducing the restenosis after the operation; however, metal stent remains in the body after the drug is released causing issues such as late thrombosis and restenosis so that currently the attention is increasing for biodegradable materials that reduce restenosis and thrombosis by degrading as a certain amount of time passes after the drug is released by the stent material. In this review, the study trend of biodegradable stent will be explained.

Share and Cite:

Kwon, D. , Kim, J. , Kim, D. , Kang, H. , Lee, B. , Lee, K. and Kim, M. (2012) Biodegradable stent. Journal of Biomedical Science and Engineering, 5, 208-216. doi: 10.4236/jbise.2012.54028.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Grüntzig, A.R., Senning, A. and Siegenthaler, W.E. (1979) Nonoperative dilatation of coronary-artery stenosis: Percutaneous transluminal coronary angioplasty. New England Journal of Medicine, 301, 61-68. doi:10.1056/NEJM197907123010201
[2] Topol, E.J., Leya, F., Pinkerton, C.A., Whitlow, P.L., Hofling, B., Simonton, C.A., Masden, R.R., Serruys, P.W., Leon, M.B., Williams, D.O., King, S.B., Mark, D.B., Isner, J.M., Holmes, Jr, D.R., Ellis, S.G., Lee, K.L., Keeler, G.P., Berdan, L.G., Hinohara, T. and Califf, R.M. (1993) A comparison of directional atherectomy with coronary angioplasty in patients with coronary artery disease. New England Journal of Medicine, 329, 212-227. doi:10.1056/NEJM199307223290401
[3] John, A. and Bittl, M.D. (1996) Advanced in coronary angioplasty. New England Journal of Medicine, 335, 1290-1302. doi:10.1056/NEJM199610243351707
[4] O’Laughlin, M.P., Perry, S.B., Lock, J.E. and Mullins, C.E. (1991) Use of endovascular stents in congenital heart disease. Circulation, 83, 1923-1939.
[5] Fischman, D.L., Leon, M.B., Baim, D.S., Schatz, R.A., Savage, M.P., Penn, I., Detre, K., Veltri, L., Ricci, D., Nobuyoshi, M., Cleman, M., Heuser, R., Almond, D., Teirstein, P.S., Fish, R.D., Colombo, A., Brinker, J., Moses, J., Shaknovich, A., Hirshfeld, J., Bailey, S., Ellis, S., Rake, R. and Goldberg, S. (1994) A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. New England Journal of Medicine, 331, 496-501. doi:10.1056/NEJM1994082533
[6] Serafino, L.D., Scudiero, L., De Laurentis, M., Ilardi, F., Magliulo, F., Carotenuto, G., Perrino, C. and Esposito, G. (2011) Drug-Eluting Stent for the treatment of early fistula failure. Journal of Biomedical Science and Engineering, 2, 196-200.
[7] Colombo, A., Drzewiecki, J., Banning, A., Grube, E., Hauptmann, K., Silber, S., Dudek, D., Fort, S., Schiele, F., Zmudka, K., Guagliumi, G. and Russell, M.E. (2003) Randomized study to assess the effectiveness of slow- and moderate-release polymer-based paclitaxel-eluting stents for coronary artery lesions. Circulation, 108, 788- 794. doi:10.1161/01.CIR.0000086926.62288.A6
[8] Holmes, Jr, D.R., Leon, M.B., Moses, J.W., Popma, J.J., Cutlip, D., Fitzgerald, P.J., Brown, C., Fischell, T., Wong, S.C., Midei, M., Snead, D. and Kuntz, R.E. (2004) Analysis of 1-year clinical outcomes in the SIRIUS trial: a randomized trial of a sirolimus-eluting stent versus a standard stent in patients at high risk for coronary restenosis. Circulation, 109, 634-640. doi:10.1161/01.CIR.0000112572.57794.22
[9] Tamai, H., Igaki, K., Kyo, E., Kosuga, K., Kawashima, A., Matsui, S., Komori, H., Tsuji, T., Motohara, S. and Uehata, H. (2000) Initial and 6-month results of biodegradable poly-L-lactic acid coronary stents in humans. Circulation, 102, 399-404.
[10] Abbott. (2007) The world’s first clinical trial of a fully bioabsorbable drug eluting coronary stent. Proceedings of the Transcatheter Cardiovascular Therapeutics 19th Annual Scientific Symposium, Washington DC, 20-25.
[11] Vogt, F., Stein, A., Rettemeier, G., Krott, N., Hoffmann, R., Vom Dahl, J., Bosserhoff, A.K, Michaeli, W., Hanrath, P., Weber, C. and Blindt, R. (2004) Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent. European Heart Journal, 25, 1330-1340. doi:10.1016/j.ehj.2004.06.010
[12] Daemen, J. and Serruys, P.W. (2007) Drug-eluting stent update 2007: Part I. A survey of current and future generation drug-eluting stents: Meaningful advances or more of the same? Circulation, 116, 316-328. doi:10.1161/CIRCULATIONAHA.106.621342
[13] Grabow, N., Bünger, C.M, Schultze, C., Schmohl, K., Martin, D.P., Williams, S.F., Sternberg, K. and Schmitz, K.P. (2007) A biodegradable slotted tube stent based on poly(L-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Annals of Biomedical Engineering, 35, 2031-2038. doi:10.1007/s10439-007-9376-9
[14] Liu, S.J., Chiang, F.J., Hsiao, C.Y., Kau, Y.C. and Liu, K.S. (2010) Fabrication of balloon-expandable self-lock drug-eluting polycaprolactone stents using micro-injection molding and spray coating techniques. Annals of Biomedical Engineering, 38, 3185-3194. doi:10.1007/s10439-010-0075-6
[15] Venkatraman, S.S., Tan, L.P., Joso, J.F.D., Boey, Y.C. and Wang, X. (2006) Biodegradable stents with elastic memory. Biomaterials, 27, 1573-1578. doi:10.1016/j.biomaterials.2005.09.002
[16] Lauto, A., Ohebshalom, M., Esposito, M., Mingin, J., Li, P.S., Felsen, D., Goldstein, M. and Poppas, D.P. (2001) Self-expandable chitosan stent: Design and preparation. Biomaterials, 22, 1869-1874. doi:10.1016/S0142-9612(00)00371-9
[17] Wissam, A. J., Sameer, K., Ioakim, G., Feras, A., Kunal, C., Mark, D. and Amjad, K. (2011) Self-expanding metal stenting for malignant colonic tumours: A prospective study. Journal of Biomedical Science and Engineering, 2, 151-154.
[18] Peuster, M., Hesse, C., Schloo, T., Fink, C., Beerbaum, P. and Von Schnakenburg, C. (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials, 27, 4955-4962. doi:10.1016/j.biomaterials.2006.05.029
[19] Peuster, M., Wohlsein, P., Brügmann, M., Ehlerding, M., Seidler, K., Fink, C., Brauer, H., Fischer, A. and Hausdorf, G. (2001) A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6-18 months after implantation into new zealand white rabbits. Heart, 86, 563-569. doi:10.1136/heart.86.5.563
[20] Mueller, P.P., May, T., Perz, A., Hauser, H. and Peuster, M. (2006) Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 27, 2193-2200. doi:10.1016/j.biomaterials.2005.10.042
[21] Staiger, M.P., Pietak, A.M., Huadmai, J. and Dias, G. (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 27, 1728-1734. doi:10.1016/j.biomaterials.2005.10.003
[22] Heublein, B., Rohde, R., Kaese, V., Niemeyer, M., Hartung, W. and Haverich, A. (2003) Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart, 89, 651-656. doi:10.1136/heart.89.6.651
[23] Di Mario. C., Griffiths, H., Goktekin, O., Peeters, N., Verbist, J., Bosiers, M., Deloose, K., Heublein, B., Rohde, R., Kasese, V., Ilsley, C. and Erbel, R. (2004) Drug-eluting bioabsorbable magnesium stent. Journal of Interventional Cardiology, 17, 391-395. doi:10.1111/j.1540-8183.2004.04081.x
[24] Eggebrecht, H., Rodermann, J., Hunold, P., Schmermund, A., B?se, D., Haude, M. and Erbel, R. (2005) Novel magnetic resonance-compatible coronary stent: The absorbable magnesium-alloy stent. Circulation, 112, E303-E304. doi:10.1161/01.CIRCULATIONAHA.104.521641
[25] Zartner, P., Cesnjevar, R., Singer, H. and Weyand, M. (2005) First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheterization Cardiovascular Interventions, 66, 590-594. doi:10.1002/ccd.20520
[26] Zhao, Z.H., Sakagami, Y. and Osaka, T. (1998) Toxicity of hydrogen peroxide produced by electroplated coatings to pathogenic bacteria, Canadian Journal of Microbiology, 44, 441-447. doi:10.1139/w98-030
[27] Mario, C.D., Grube, E., Nisanci, Y., Reifart, N., Colombo, A., Rodermann, J., Mullerb, R., Ummanc, S., Liistroa, F., Montorfanoa, M. and Alte, E. (2004) MOONLIGHT: A controlled registry of an iridium oxide-coated stent with angiographic follow-up. International Journal of Cardiology, 95, 329-331. doi:10.1016/j.ijcard.2003.10.007
[28] Bolz, A. and Schaldach, M. (1990) Artificial heart valves: improved blood compatibility by PECVD a-SiC:H coating, Artificial Organs, 14, 260-269. doi:10.1111/j.1525-1594.1990.tb02967.x
[29] Unverdorben, M., Sippel, B., Degenhardt, R., Sattler, K., Fries, R., Abt, B., Wagner, E., Koehler, H., Daemgen, G., Scholz, M., Ibrahim, H., Tews, K-H., Hennen, B., Berthold, H.K. and Vallbracht, C. (2003) Comparison of a silicon carbide-coated stent versus a noncoated stent in human beings: The tenax versus NIR stent study’s long-term outcome. American Heart Journal, 145, E17. doi:10.1067/mhj.2003.90
[30] Sgura, F.A., Mario, C.D., Liistro, F., Montorfano, M., Colombo, A. and Grube, E. (2002) The lunar stent characteristics and clinical results. Herz, 27, 514-517. doi:10.1007/s00059-002-2363-x
[31] Brown, D.A., Lee, E.W., Loh, C.T. and Kee, S.T. (2009) A new wave in treatment of vascular occlusive disease: biodegradable stents-clinical experience and scientific principles. Journal of Vascular and Interventional Radiology, 20, 315-325. doi:10.1016/j.jvir.2008.11.007
[32] Zilberman, M. and Eberhart, R.C. (2006) Drug-eluting bioresorbable stents for various applications. Annual Review of Biomedical Engineering, 8, 153-180. doi:10.1146/annurev.bioeng.8.013106.151418
[33] Serrano, M.C., Chung, E.J. and Ameer, G.A. (2010) Advances and applications of biodegradable elastomers in regenerative medicine. Advanced Functional Materials, 20, 192-208. doi:10.1002/adfm.200901040
[34] Xue, L., Dai, S. and Li, Z. (2010) Biodegradable shapememory block co-polymers for fast self-expandable stents. Biomaterials, 31, 8132-8140. doi:10.1016/j.biomaterials.2010.07.043
[35] Park, S.B., Kang, K.H., Park, H.J., Park, J.S., Heo, S.H., Kim, H., Choy, Y.B. and Heo, C.Y. (2011) An evaluation of poly(L-lactic acid) plate and screw system for fixation of mandible fracture in rabbit model. Tissue Engineering and Regenerative Medicine, 8, 398-405.
[36] Woodruff, M.A. and Hutmacher, D.W. (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 35, 1217-1256. doi:10.1016/j.progpolymsci.2010.04.002
[37] Kim, M.S., Kim, J.H., Min, B.H., Chun, H.J., Han, D.K. and Lee, H.B. (2011) Polymeric scaffolds for regenerative medicine. Polymer Reviews, 51, 1-30. doi:10.1080/15583724.2010.537800
[38] Gunatillake, P.A. and Adhikari, R. (2003) Biodegradable synthetic polymers for tissue engineering. European Cell and Materials, 5, 1-16.
[39] Barrett, D.G. and Yousaf, M.N. (2009) Design and applications of biodegradable polyester tissue scaffolds based on endogenous monomers found in human metabolism. Molecules, 14, 4022-4050. doi:10.3390/molecules14104022
[40] Yasuda, H., Yamamoto, K., Nakayama, Y., Tsutsumi, C., Lecomte, P., Jerome, R., McCarthy, S. and Kaplane, D. (2004) Comparison of Sm complexes with Sn compounds for syntheses of copolymers composed of lactide and ε-caprolactone and their biodegradabilities. Reactive & Functional Polymers, 61, 277-292. doi:10.1016/j.reactfunctpolym.2004.06.007
[41] Tiainen, J., Veiranto, M., Suokas, E., Tormala, P., Waris, T., Ninkoviv, M. and Ashammakhi, N. (2002) Bioabsorbable ciprofloxacin-containing and plain self-reinforced polylactide-polyglycolide 80/20 screws: pullout strength properties in human cadaver parietal bones. Journal of Craniofacial Surgery, 13, 427-433. doi:10.1097/00001665-200205000-00013
[42] Middleton, J.C. and Tipton, A.J. (1998) Synthetic biodegradable polymers as medical devices. Medical Plastics and Biomaterials Magazine.
[43] Pillai, C.K. and Sharma, C.P. (2010) Review paper: Absorbable polymeric surgical sutures: Chemistry, production, properties, biodegradability, and performance. Journal of Biomaterials Applications, 25, 291-366. doi:10.1177/0885328210384890
[44] Yang, S., Leong, K.F., Du, Z. and Chua, C.K. (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Engineering, 7, 679-689. doi:10.1089/107632701753337645
[45] Zhang, Z., Kuijer, R., Bulstra, S.K., Grijpma, D.W. and Feijen, J. (2006) The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials, 27, 1741-1748. doi:10.1016/j.biomaterials.2005.09.017
[46] Ramchandani, M., Pankaskie, M. and Robinson, D. (1997) The influence of manufacturing procedure on the degradation of poly(lactide-co-glycolide) 85:15 and 50:50 implants. Journal of Controlled Release, 43, 161-173. doi:10.1016/S0168-3659(96)01481-2
[47] Sudesh, K., Abe, H. and Doi, Y. (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progress in Polymer Science, 25, 1503-1555. doi:10.1016/S0079-6700(00)00035-6
[48] Gingras, A.C., Raught, B. and Sonenberg, N. (2004) mTOR signaling to translation. Current Topics in Microbiology and Immunology, 279, 169-197. doi:10.1007/978-3-642-18930-2_11
[49] Ragosta, M., Karve, M., Brezynski, D., Humphries, J., Sanders, J.M., Sarembock, I.J., Gimple, L.W. and Powers, E.R. (1999) Effectiveness of heparin in preventing thrombin generation and thrombin activity in patients undergoing coronary intervention. American Heart Journal, 137, 250-257. doi:10.1053/hj.1999.v137.91541
[50] Goosen, M.F. and Sefton, M.V. (1983) Properties of a heparin-poly(vinyl alcohol) hydrogel coating. Journal of Biomedical Materials Research, 17, 359-373. doi:10.1002/jbm.820170212
[51] Yang, Z., Birkenhauer, P., Julmy, F., Chickering, D., Ranieri, J.P., Merkle, H.P., Lüscher, T.F. and Gander, B. (1999) Sustained release of heparin from polymeric particles for inhibition of human vascular smooth muscle cell proliferation. Journal of Controlled Release, 60, 269-277. doi:10.1016/S0168-3659(99)00078-4
[52] Tan, L.P., Venkatraman, S.S., Sung, P.F. and Wang, X.T. (2004) Effect of plasticization on heparin release from biodegradable matrices. International Journal of Pharmaceutics, 283, 89-96. doi:10.1016/j.ijpharm.2004.06.022
[53] Sheth, S., Dev, V., Jacobs, H., Forrester, J.S., Litvack, F. and Eigler, N.L. (1995) Prevention of subacute stent thrombosis by polymer-polyethylene oxide-heparin coating in the rabbit carotid artery. Journal of the American College of Cardiology, 25, 348A-349A. doi:10.1016/0735-1097(95)92903-I
[54] Marx, S.O., Jayaraman, T., Go, L.O. and Marks, A.R. (1995) Rapamycin-FKBP inhibits cell cycle regulators of proliferation in vascular smooth muscle cells. Circulation Research, 76, 412-417.
[55] Poon, M., Marx, S.O., Gallo, R., Badimon, J.J., Taubman, M.B. and Marks, A.R. (1996) Rapamycin inhibits vascular smooth muscle cell migration. Journal of Clinical Investigation, 98, 2277-2283. doi:10.1172/JCI119038
[56] Moses, J.W., Leon, M.B., Popma, J.J., Fitzgerald, P.J., Holmes, D.R., O’Shaughnessy, C., Caputo, R.P., Kereiakes, D.J., Williams, D.O., Teirstein, P.S., Jaeger, J.L. and Kuntz, R.E. (2003) Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. New England Journal of Medicine, 349, 1315-1323. doi:10.1056/NEJMoa035071
[57] Lee, J.Y., Kim, D.Y., Kim, G.H., Kang, K.M., Min, B.H., Lee, B., Kim, J.H. and Kim, M.S. (2011) Enhanced stability of nano-emulsified paclitaxel. Journal of Biomedical Science and Engineering, 4, 350-354.
[58] Lee, J.Y., Kim, K.S., Kang, Y.M., Kim, E.S., Hwang, S.J., Lee H.B., Min, B.H., Kim, J.H. and Kim, M.S. (2010) In vivo efficacy on subcutaneous tumor growth of Ptxloaded injectable in situ gel. International Journal of Pharmaceutics, 392, 51-56. doi:10.1016/j.ijpharm.2010.03.033
[59] Kim, G.H., Lee, J.Y., Kang, Y.M., Kang, K.N., Kim, E.S., Kim, D.Y., Kim, J.H. and Kim, M.S. (2011) Preparation and characterization of self-emulsified docetaxel. Journal of Nanomaterials, 2011, 6-11. doi:10.1155/2011/860376
[60] Liistro, F. and Bolognese, L. (2003) Drug-eluting stents. Heart Drug, 3, 203-213. doi:10.1159/000075706
[61] Ong, A.T.L., Hoye, A., Aoki, J., van Mieghem, C.A., Rodriguez Granillo, G.A., Sonnenschein, K., Regar, E., McFadden, E.P., Sianos, G., van der Giessen, W.J., de Jaegere, P. P., de Feyter, P., van Domburg, R.T. and Serruys, P.W. (2005) Thirty-day incidence and six-month clinical outcome of thrombotic stent occlusion after baremetal, sirolimus, or paclitaxel stent implantation. Journal of the American College of Cardiology, 45, 947-953. doi:10.1016/j.jacc.2004.09.079
[62] Ong, A.T., McFadden, E.P., Regar, E., de Jaegere, P. P., van Domburg, R.T. and Serruys, P.W. (2005) Late angiographic stent thrombosis (LAST) events with drug-eluting stents. Journal of the American College of Cardiology, 45, 2088-2092. doi:10.1016/j.jacc.2005.02.086
[63] Iakovou, I., Schmidt, T., Bonizzoni, E., Ge, L., Sangiorgi, G.M., Stankovic, G., Airoldi, F., Chieffo, A., Montorfano, M., Carlino, M., Michev, I., Corvaja, N., Briguori, C., Gerckens, U., Grube, E. and Colombo, A. (2005) Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. Journal of the American Medical Association, 293, 2126-2130. doi:10.1001/jama.293.17.2126
[64] Bruyne, B.D. (2010) Absorb cohort B trial: 6-Month clinical and angiographic results of the evaluation of the bioresorbable everolimus-eluting vascular scaffold (BVS) in the treatment of patients with de novo native coronary artery lesions. Proceedings of the Euro PCR 2010 Conference, Paris, France, 6.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.