A Model for the Characterization and Selection of Beeswaxes for Use as Base Substitute Tissue in Photon Teletherapy


This paper presents a model for the characterization and selection of beeswaxes for use as base substitute tissue for the manufacture of objects suitable for external radiotherapy using megavoltage photon beams. The model of characterization was divided into three distinct stages: 1) verification of aspects related to the origin of the beeswax, the bee species, the flora in the vicinity of the beehives and procedures to detect adulterations; 2) evaluation of physical and chemical properties; and 3) evaluation of beam attenuation capacity. The chemical composition of the beeswax evaluated in this study was similar to other simulators commonly used in radiotherapy. The behavior of the mass attenuation coefficient in the radiotherapy energy range was comparable to other simulators. The proposed model is efficient and enables convenient assessment of the use of any particular beeswax as a base substitute tissue for radiotherapy.

Share and Cite:

R. Vidal and D. Souza, "A Model for the Characterization and Selection of Beeswaxes for Use as Base Substitute Tissue in Photon Teletherapy," Materials Sciences and Applications, Vol. 3 No. 4, 2012, pp. 218-223. doi: 10.4236/msa.2012.34032.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. B. Podgorsak, “Radiation Oncology Physics: A Hand- book for Teachers and Students,” International/Atomic Energy Agency, 1957, p. 657.
[2] “Brazilian Radiotherapy Society,” 2011. http://www.sbradioterapia.com.br
[3] D. R. White, “Tissue Substitutes in Experimental Radia- tion Physics,” Medical Physics, Vol. 5, No. 6, 1978, pp. 467-479. doi:10.1118/1.594456
[4] D. R. White, “The Formulation of Tissue Substitute Ma- terials Using Basic Interaction Data,” Physics in Medicine and Biology, Vol. 22, No. 5, 1975, pp. 22-25.
[5] D. R. White and C. Constatinou, “Anthropomorphic Phan- tom Materials. The Progress in Medical Radiation Phys- ics,” Plenum Press, New York, 1982, pp. 133-193.
[6] International Commission on Radiation Units and Meas- urements, “Tissue Substitutes in Radiation Dosimetry and Measurement,” Report.44, 1989.
[7] R. Zovaro, “Ceras de Abelhas: Produ??o e Beneficia- mento,” AEP, Vol. 1, 2007, p. 23.
[8] D. Scheidegger, “Bólus e Filtros em Cunha Feitos Com Cera de Abelha Para Utiliza??o em Radioterapia Com 60Co,” Publica??es, CEFET, 2003.
[9] M. Tobler, “Design and Production of Wax Compensa- tors for Electron Treatments of the Chest Wall,” Medical Dosimetry, Vol. 21, No. 4, 2006, pp. 199-206. doi:10.1016/S0958-3947(96)00126-4
[10] “Embrapa Meio-Norte,” 2011. http://www.embrapa.mn.gov.br
[11] J. L. Bernal, “Physico-Chemical Parameters for the Char- acterization of Pure Beeswax and Detection of Adultera- tions,” European Journal of Lipid Science and Technology, Vol. 107, No. 3, 2005, pp. 158-166. doi:10.1002/ejlt.200401105
[12] A. R. Silva, “Characterization of the Honey Bee Flora in the Semi-Arid of Brazilian State of Paraiba,” Archivos de Zootecnia, Vol. 220, No. 4, 2000, pp. 427-438.
[13] Ministério da Agricultura, Pecuária e Abastecimento. Regulamentos Técnicos de Identidade e Qualidade de Produtos Apícolas, “Instru??o Normativa No. 3, Sistema de Consulta a Legisla??o—SISLEG,” 2001.
[14] United States Pharmacopoeial Convention, National Pub- lishing, Rockville, 2000.
[15] British Prarmacopoeia Commission Secretariat, HMSO, London, 1993.
[16] Real Farmacopea Espa?ola, “Ministerio de Sanidad y Consumo,” 1997.
[17] R. N. Rangel, “Práticas de Físico-Química,” Blucher, Erkrath, 2006.
[18] L. Casares, “Tratado de Analisis Químico,” Toledo, 1997.
[19] E. Moretto, “óleos e Gorduras Vegetais: Processamento e Análises,” UFSC, 1989.
[20] Ministério da Saúde, “Farmacopeia Brasileira,” Atheneu, 1988.
[21] J. Serra, “Características Físico-Químicas de la Cera de Abejas Producida en Espa?a,” Alimentación, Equipos y Tecnologia, Vol. 8, No. 3, 1989, pp. 213-216.
[22] D. M. Robinson and J. W. Scrimger, “Monoenergetic Approximation of a Polyenergetic Beam: A Theorical Approach,” The British Journal of Radiology, Vol. 64, No. 761, 1991, pp. 452-454. doi:10.1259/0007-1285-64-761-452
[23] J. H. Hubbel and S. M. Seltzer, “Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest,” NISTIR 5632, 1995.
[24] M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. S. Coursey, and D. S. Zucker, “XCOM: Photon Cross Section Data- base (Version 1.2),” National Institute of Standards and Technology, Gaithersburg, 1999.
[25] IAEA, “TECDOC 1151—Aspectos Físicos de La Garantía de Calidad en Radioterapia: Protocolo de Control de Calidad,” International Atomic Energy Agency, Vienna, 2000.
[26] E. J. Turner, “Atoms, Radiation, and Radiation Protec- tion,” Willey, New York, 2007. doi:10.1002/9783527616978
[27] F. Khan, “The Physics of Radiation Therapy,” Williams and Wilkins, Philadelphia, 1994.
[28] AIEA, “Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Do- simetry Based on Standards of Absorbed Dose to Water,” Technical Report Series—398, 2000.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.