Modulus and Hardness Change of Silicon and Sapphire Substrates by TiC/VC Multilayer Coatings


The nanohardness H of multilayer specimens TiC/VC@Si and TiC/VC@Sapphire prepared by Pulsed-Laser-Deposition is investigated to check the existence of a superlattice effect as known from TiN/VN multilayers. In the present work the multilayer period thickness λ varies between 1.34 nm and 24.8 nm (total layer thickness t ≈ 200 nm). Unlike Young’s modulus E, H is enhanced, regardless of t, by covering Si as well as sapphire with a TiC/VC multilayer; the relative load carrying capacity being larger for Si. The maximum value of H obtained is 38 GPa for TiC/VC@Sapphire. It is observed for a multilayer thickness of λ ≈ 10 nm. Hardness of TiC/VC@Sapphire obeys, after annealing, a Hall-Petch relation H = 35.25 + 6.945 λ–0.5 (H in GPa und λ≥ 10 nm). From orientation dependent X-ray absorption fine structure and X-ray reflection records, short-range order and layer geometry are derived. These analyses reveal a continuous approach of interatomic distances Ti-C and V-C for deceasing multilayer periods. High-resolution transmission electron microscopy shows that multilayers are nanostructured, i.e., not only TiC/VC phase boundaries but also subgrains represent obstacles against plastic deformation. Dislocations play a major role as sources of internal stress and vehicles of plasticity.

Share and Cite:

A. Belger, M. Reibold and P. Paufler, "Modulus and Hardness Change of Silicon and Sapphire Substrates by TiC/VC Multilayer Coatings," Materials Sciences and Applications, Vol. 3 No. 4, 2012, pp. 185-194. doi: 10.4236/msa.2012.34029.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. F. Jankowski and T. Tsakalakos, “The Effect of Strain on the Elastic Constants of Noble Metals,” Journal of Physics F: Metal Physics, Vol. 15, No. 6, 1985, pp. 1279- 1292. doi:10.1088/0305-4608/15/6/013
[2] W. D. Sproul, “Reactive Sputter Deposition of Polycrys- talline Nitride and Oxide Superlattice Coatings,” Surface and Coatings Technology, Vol. 86-87, 1996, pp. 170-176. doi:10.1016/S0257-8972(96)02977-5
[3] S. A. Barnett, “Physics of Thin Films,” M. H. Francombe and J. L. Vossen, Eds., Vol. 17, Academic Press, San Diego, 1993.
[4] L. Hultman, C. Engstr?m and M. Odén, “Mechanical and Thermal Stability of TiN/NbN Superlattice Thin Films,” Surface and Coatings Technology, Vol. 133-134, 2000, pp. 227-233. doi:10.1016/S0257-8972(00)00935-X
[5] U. Helmersson, S. Todorova, S. A. Barnett, J.-E. Sundgren, L. C. Markert and J. E. Greene, “Growth of Single-Crys- tal TiN/VN Strained Layer Superlattices with Extremely High Mechanical Hardness,” Journal of Applied Physics, Vol. 62, No. 2, 1987, pp. 481-484. doi:10.1063/1.339770
[6] J. S. Koehler, “Attempt to Design a Strong Solid,” Physi- cal Review B, Vol. 2, No. 2, 1970, pp. 547-551.
[7] A. Misra, J. P. Hirth and R. G. Hoagland, “Length- Scale-Dependent Deformation Mechanisms in Incoherent Metallic Multi-layered Composites,” Acta Materialia, Vol. 53, No. 18, 2005, pp. 4817-4824. doi:10.1016/j.actamat.2005.06.025
[8] H. Ljungcrantz, C. Engstr?m, L. Hultman, M. Olsson, X. Chu, M. S. Wong and W. D. Sproul, “Nanoindentation Hardness, Abrasive Wear, and Microstructure of TiN/NbN Polycrystalline Nanostructured Multilayer Films by Re- active Magnetron Sputtering,” Journal of Vacuum Sci- ence and Technology A, Vol. 16, No. 5, 1998, pp. 3104- 3113.
[9] G. Abadias, A. Michel, C. Tromas, C. Jaouen and S. N. Dub, “Stress, Interfacial Effects and Mechanical Proper- ties of Nanoscale Multilayered Coatings,” Surface and Coatings Technology, Vol. 202, No. 4-7, 2007, pp. 844- 853. doi:10.1016/j.surfcoat.2007.05.068
[10] K. N. Strafford, “Tribological Properties of Coatings— Expectations, Performance and the Design Dilemma,” Surface and Coatings Technology, Vol. 81, No. 1, 1996, pp. 106-117. doi:10.1016/0257-8972(95)02651-7
[11] A. R. Phani, J. E. Krzanowski and J. J. Nainaparampil, “Structural and Mechanical Properties of TiC and Ti-Si-C Films Deposited by Pulsed Laser Deposition,” Journal of Vacuum Science and Technology A, Vol. 19, No. 5, 2001, pp. 2252-2258. doi:10.1116/1.1382876
[12] S. Garcia-Manyes, A. G. Güell, P. Gorostiza and F. Sanz, “Nanomechanics of Silicon Surfaces with Atomic Force Microscopy: An Insight to the First Sates of Plastic De- formation,” Journal of Chemical Physics, Vol. 123, No. 11, 2005, pp. 114711-114717. doi:10.1063/1.2035094
[13] S. Dub, V. Brazhkin, N. Novikov, G. Tolmachova, P. Litvin, L. Lityagina and T. Dyuzheva, “Comparative Studies of Mechanical Properties of Stishovite and Sap- phire Single Crystals by Nanoindentation,” Journal of Superhard Materials, Vol. 32, No. 6, 2010, pp. 406-414. doi:10.3103/S1063457610060067
[14] P. Paufler and A. Belger, “Superhard Materials,” Proceed- ings of the 7th Vietnamese-German Seminar on Physics and Engineering, 28 March-3 April 2004, Halong Viet- nam, pp. 25-28.
[15] J. Tang, J. S. Zabinski and J. E. Bultman, “TiC Coatings Prepared by Pulsed Laser Deposition and Magnetron Sputtering,” Surface and Coatings Technology, Vol. 91, No. 1, 1997, pp. 69-73. doi:10.1016/S0257-8972(96)03124-6
[16] D. C. Meyer and P. Paufler, “X-Ray Characterization of Nanolayers,” H. S. Nalwa, Ed., Encyclopedia of Nanosci- ence and Nanotechnology, Vol. 10, No. 1, 2004, pp. 655- 680.
[17] A. A. Levin, P. Paufler and D. C. Meyer, “Low-Tem- perature Domain Behaviour of a SrTiO3 (001) Single Crystal Plate,” Physica B, Vol. 393, No. 1-2, 2007, pp. 373-381. doi:10.1016/j.physb.2007.01.029
[18] K. Helming, “Personal Communication”.
[19] K. Helming and U. Preckwinkel, “Texture Analysis with Area Detectors,” Solid State Phenomena, Vol. 105, 2005, pp. 71-76. doi:10.4028/
[20] A. Belger, T. Sebald, P. Paufler, H. Mai and E. Beyer, “Polarized EXAFS Studies of TiC/VC-Multilayers,” HASYLAB Annual Report, Part 1, 2001, pp. 783-784.
[21] N. K. Mukhopadhyay and P. Paufler, “Micro- and Nanoindentation Techniques for Mechanical Characteri- sation of Materials,” International Materials Reviews, Vol. 51, No. 4, 2006, pp. 209-245. doi:10.1179/174328006X102475
[22] I. P. Shakhverdova, P. Paufler, R. S. Bubnova, S. K. Fila- tov, A. A. Levin and D. C. Meyer, ”Mechanical Proper- ties of Single Crystalline and Glassy Lithium Triborate,” Crystal Research and Technology, Vol. 43, No. 4, 2008, pp. 339-349. doi:10.1002/crat.200711104
[23] W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experi- ments,” Journal of Materials Research, Vol. 7, No. 6, 1992, pp. 1564-1583. doi:10.1557/JMR.1992.1564
[24] E. Meyer, “Untersuchungen über H?rteprüfung und H?rte,” Zeitschrift des Vereins Deutscher Ingenieure, Vol. 52, No. 17, 1908, pp. 645-654, 740-748, 835-844.
[25] “Elastica,” Software Package, Version 2.1. Asmec Ger- many, 2003.
[26] A. M. Korsunsky, M. R. McGurk, S. J. Bull and T. F. Page, “On the Hardness of Coated Systems,” Surface and CoatingsTechnology, Vol. 99, No. 1, 1998, pp. 171-183. doi:10.1016/S0257-8972(97)00522-7
[27] E. O. Hall, “The Deformation and Ageing of Mild Steel. III Discussion of Results,” Proceedings of the Physical Society London, Vol. 64, No. 381, 1951, pp. 747-753.
[28] N. J. Petch, “The Cleavage Strength of Polycrystals,” Journal of the Iron and Steel Institute, Vol. 174, 1953, pp. 25-28.
[29] T. H. Courtney, “Mechanical Behavior of Materials,” McGraw Hill Publ. Co., Singapore, 1990.
[30] J. C. M. Li, “Petch Relation and Grain Boundary Sources,” Transactions of the Metallurgical Society of AIME, Vol. 227, 1963, pp. 239-247.
[31] P. Kizler and S. Schmauder, “Simulation of the Nanoin- dentation of Hard Metal Carbide Layer Systems—The Case of Nanostructured Ultra-Hard Carbide Layer Sys- tems,” Computational Materials Science, Vol. 39, 2007, pp. 205-213. doi:10.1016/j.commatsci.2006.03.027
[32] D. K. Chatterjee, M. G. Mendiratta and H. A. Lipsitt, “Deformation Behaviour of Single Crystals of Titanium Carbide,” Journal of Materials Science, Vol. 14, No. 9, 1979, pp. 2151-2156. doi:10.1007/BF00688420

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.