Effect of Acidic Catalyst on Properties of Novel Conductive Copolymer Films Made of Pyrrole and Formyl Pyrrole


Effect of acidic catalysis having carboxylic acid group was studied on properties of conductive copolymer films made of pyrrole (Py) and 2-formyl pyrrole (FPy). It was noted that trifluoroacetic acid (TFA) and trichloroacetic acid (TCA) were suitable for the preparation of copolymer films, which showed good properties in its strength and electrical conductivity of the copolymer films. When the concentration of TFA or TCA was increased in the monomer feed, the copolymerization yield became higher and the obtained films showed electrical conductivity in the range of 10–4 - 10–3 S/cm. FT-IR and UV-Vis spectra confirmed the formation of conjugate chemical structure in the copolymer film.

Share and Cite:

Y. Hoshina and T. Kobayashi, "Effect of Acidic Catalyst on Properties of Novel Conductive Copolymer Films Made of Pyrrole and Formyl Pyrrole," Engineering, Vol. 4 No. 3, 2012, pp. 139-145. doi: 10.4236/eng.2012.43018.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. Tourillion and F. Garnier, “New Electrochemically Ge- nerated Organic Conducting Polymers,” Journal of Elec- troanalytical Chemistry and Interfacial Electrochemistry, Vol. 135, No. 1, 1982, pp. 173-178. doi:10.1016/0022-0728(82)90015-8
[2] J. Joo, J. K. Lee, S. Y. Lee, K. S. Jang, E. J. Oh and A. J. Epstein, “Physical Characterization of Electrochemically and Chemically Synthesized Polypyrroles,” Macromole- cules, Vol. 33. No. 14, 2000, pp. 5131-5136. doi:10.1021/ma991418o
[3] H. C. Kang and K. E. Geckeler, “Enhanced Electrical Conductivity of Polypyrrole Prepared by Chemical Oxi- dative Polymerization: Effect of the Preparation Tech- nique and Polymer Additive,” Polymer, Vol. 41. No. 18, 2000, pp. 6931-6934. doi:10.1016/S0032-3861(00)00116-6
[4] L. X. Xia, X. G. Li and Y L. Yang, “Preparation, Proper- ties and Applications of Polypyrroles,” Reactive and Func- tional Polymers, Vol. 47, No. 2, 2001, pp. 125-139. doi:10.1016/S1381-5148(00)00079-1
[5] A. J. F. Romero, J. J. L. Cascales and T. F. Otero, “Per- chlorate Interchange during the Redox Process of PPy/ PVS Films in an Acetonitrile Medium. A Voltammetric and EDX Study,” The Journal of Physical Chemistry B, Vol. 109. No. 2, 2005, pp. 907-914. doi:10.1021/jp046601k
[6] P. M. Carrasco, H. J. Grande, M. Cortazar, J. M. Alberdi, J. Areizaga and J. A. Pomposa, “Structure-Conductivity Relationships in Chemical Polypyrroles of Low, Medium and High Conductivity,” Synthetic Metals, Vol. 156. No. 5-6, 2006, pp. 420-425. doi:10.1016/j.synthmet.2006.01.005
[7] C. Yang, and P. Liu, “Water-Dispersed Conductive Poly- pyrroles Doped with Lignosulfonate and the Weak Tem- perature Dependence of Electrical Conductivity,” Indus- trial & Engineering Chemistry Research, Vol. 48. No. 21, 2009, pp. 9498-9503. doi:10.1021/ie900189j
[8] M. A. Chougule, S. G. Pawar, P. R. Godse, R. N. Mulik, Shashwati Sen and V. B. Pati, “Synthesis and Characteri- zation of Polypyrrole (PPy) Thin Films,” Soft Nanosci- ence Letters, Vol. 1. No. 1, 2011, pp. 6-10. doi:10.4236/snl.2011.11002
[9] M. Omastová, M. Trchová, J. Ková?ová and J. Stejskal, “Synthesis and Structural Study of Polypyrroles Prepared in the Presence of Surfactants,” Synthetic Metals, Vol. 138. No. 3, 2003, pp. 447-455. doi:10.1016/S0379-6779(02)00498-8
[10] K. S. Jang, H. Lee and B. Moon, “Synthesis and Charac- terization of Water Soluble Polypyrrole Doped with Func- tional Dopants,” Synthetic Metals, Vol. 143. No. 3, 2004, pp. 289-294. doi:10.1016/j.synthmet.2003.12.013
[11] H. D. Tran, K. Shin, w. G. Hong, J. M. D’Arcy, R. W. Kojima, B. H. Weiller and R. B. Kaner, “A Template- Free Route to Polypyrrole Nanofibers,” Macromolecular Rapid Communications, Vol. 28. No. 24, 2007, pp. 2289- 2293. doi:10.1002/marc.200700581
[12] A. F. Diaz, K. K. Kanazawa and G. P. Gardini, “Elec- trochemical Polymerization of Pyrrole,” Journal of the Chemical Society, Chemical Communications, No. 14, 1979, pp. 635-636. doi:10.1039/C39790000635
[13] D. A. Kaplin and S. Qutubuddin, “Electrochemically Syn- thesized Polypyrrole Films: Effects of Polymerization Po- tential and Electrolyte Type,” Polymer, Vol. 36. No. 6, 1995, pp. 1275-1286. doi:10.1016/0032-3861(95)93931-B
[14] S. M. Sayyah, S. S. Abd El-Rehim and M. M. El-Deeb, “Electropolymerization of Pyrrole and Characterization of the Obtained Polymer Films,” Journal of Applied Poly- mer Science, Vol. 90. No. 7, 2003, pp. 1783-1792. doi:10.1002/app.12793
[15] R. E. Myers, “Chemical Oxidative Polymerization as a Synthetic Route to Electrically Conducting Polypyrroles,” Journal of Electronic Materials, Vol. 15. No. 2, 1986, pp. 61-69. doi:10.1007/BF02649904
[16] K. Ishizu, H. Tanaka and R. Saito, “Microsphere Synthesis of Polypyrrole by Oxidation Polymerization,” Polymer, Vol. 37. No. 5, 1996, pp. 863-867. doi:10.1016/0032-3861(96)87266-1
[17] Y. Kudoh, “Properties of Polypyrrole Prepared by Chemical Polymerization Using Aqueous Solution Containing Fe2(SO4)3 and Anionic Surfactant,” Synthetic Metals, Vol. 79. No. 1, 1996, pp. 17-22. doi:10.1016/0379-6779(96)80124-X
[18] M. Salmon, K. K. Kanazawa, A. F. Diaz and M. Krounbi, “A Chemical Route to Pyrrole Polymer Films,” Journal of Polymer Science: Polymer Letters Edition, Vol. 20. No. 3, 1982, pp. 187-193. doi:10.1002/pol.1982.130200308
[19] B. Sari and M. Talu, “Electrochemical copolymerization of pyrrole and aniline,” Synthetic Metals, Vol. 94. No. 2, 1998, pp. 221-227. doi:10.1016/S0379-6779(98)00010-1
[20] F. Fusalba and D. Bélanger, “Electropolymerization of Polypyrrole and Polyaniline-Polypyrrole from Organic Acidic Medium,” The Journal of Physical Chemistry B, Vol. 103. No. 42, 1999, pp. 9044-9054. doi:10.1021/jp9916790
[21] A. Prasannan, N. Somanathan, P. D. Hong and W. T. Chuang, “Studies on Polyaniline-Polypyrrole Copolymer Micro Emulsions,” Materials Chemistry and Physics, Vol. 116, No. 2-3, 2009, pp. 406-414. doi:10.1016/j.matchemphys.2009.04.014
[22] M. J. Antony and M. Jayakannan, “Self-Assembled Nio- nic Micellar Template for Polypyrrole, Polyaniline, and Their Random Copolymer Nanomaterials,” Journal of Polymer Science Part B: Polymer Physics, Vol. 47, No. 8, 2009, pp. 830-846.doi:10.1002/polb.21689
[23] S. Kuwabata, S. Ito and H. Yoneyama, “Copolymeriza- tion of Pyrrole and Thiophene by Electrochemical Oxida- tion and Electrochemical Behavior of the Resulting Co- polymers,” Journal of the Electrochemical Society, Vol. 135, No. 7, 1988, pp. 1691-1695. doi:org/10.1149/1.2096098
[24] X. Li, M. Lu and H. Li, “Electrochemical Copolymeriza- tion of Pyrrole and Thiphene Nanofibrils Using Template- Synthesis Method,” Journal of Applied Polymer Science, Vol. 86, No. 10, 2002, pp. 2403-2407. doi:10.1002/app.10893
[25] X. B. Wan, W. Zhang, S. Jin, G. Xue, Q. D. You and B. Che, “The Electrochemical Copolymerization of Pyrrole and Furan in a Novel Binary Solvent System,” Journal of Electroanalytical Chemistry, Vol. 470, No. 1, 1999, pp. 23-30. doi:10.1016/S0022-0728(99)00205-3
[26] M. Nishizawa, T. Sawagushi, T. Matsue and I. Uchida, “In Situ Characterization of Copolymers of Pyrrole and N-Methylpyrrole at Microarray Electrodes,” Synthetic Me- tals, Vol. 45. No. 2, 1991, pp. 241-248. doi:10.1016/0379-6779(91)91809-O
[27] Y. W. Chen-Yang, J. L. Li, T. L. Wu, W. S. Wang and T. F. Hon, “Electropolymerization and Electrochemical Pro- perties of (N-hydroxyalkyl)Pyrrole/Pyrrole Copolymers,” Electrochimica Acta, Vol. 49, No. 12, 2004, pp. 2031- 2040. doi:10.1016/j.electacta.2003.12.033
[28] A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, “A Simplified Synthesis for Meso- Tetraphenylporphine,” The Journal of Organic Chemistry, Vol. 32, No. 3, 1967, p. 476. doi:10.1021/jo01288a053

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.