[1]
|
G. I. Taylor, “Stability of a Viscous Liquid Contained Between Two Rotating Cylinders,” Philosophical Translations of the Royal Society A, Vol. 223, No. 605-615, 1923, pp. 289-343. doi:10.1098/rsta.1923.0008
|
[2]
|
P. A. Drazin and W. H. Reid, “Hydrodynamic Stabilit,” Cambridge University Press, New York, 1981.
|
[3]
|
M. Renardy, Y. Renardy, R. Sureshkumar and A. N. Beris, “Hopf-Hopf and Steady-Hopf Mode Interactions in Taylor-Couette Flow of an Upper Convected Maxwell Liquid,” Journal Non-Newtonian Fluid Mechanics, Vol. 63, No. 1, 1996, pp. 1-31.
doi:10.1016/0377-0257(95)01415-2
|
[4]
|
D. G. Thomas, B. Khomami and R. Sureshkumar, “Nonlinear Dynamics of Vis-coelastic Taylor-Couette Flow: Effect of Elasticity on Pattern Selection, Molecular Conformation and Drag,” Journal of Fluid Mechanics, Vol. 620, 2009, pp. 353-382.
doi: 10.1017/S0022112008004710
|
[5]
|
Andrew Hill and Ian Stewart, “Hopf-Steady-State Mode Interactions with O (2) Symmetry,” Dynamics and Stability of Systems, Vol. 6, No. 2, 1991, pp. 149-171.
doi:10.1080/02681119108806113
|
[6]
|
J. Parker and P. Merati, “Investigation of Turbulent Taylor-Couette Flow Using Laser Doppler Velocimetry in a Refractive Index Matched Facility,” Journal of Fluids Engineering, Vol. 118, No. 4, 1996, pp. 810-818.
doi:10.1115/1.2835513
|
[7]
|
H. A. Snyder, “Change in Wave-Form and Mean Flow Associated with Wavelength Variation in Rotating Couette Flow Part 1,” Journal of Fluid Mechanics, Vol. 35, No. 2, 1969, pp. 337-352.
dio:10.1017/S0022112069001145
|
[8]
|
V. Sobolik, B. Izrar, F. Lusseyran and S. Skali, “Interaction between the Ekman Layer and the Couette-Taylor Instability,” International Journal of Heat and Mass Transfer, Vol. 43, No. 24, 2000, pp. 4381-4393.
doi:10.1016/S0017-9310(00)00067-3
|
[9]
|
E. L. Koschmieder, “Turbulent Taylor Vortex Flow,” Journal Fluid Mechanics, Vol. 93, No. 3, 1979, pp. 515-527. doi:10.1017/S0022112079002639
|
[10]
|
C. D. Andereck, S. S. Liu and H. L. Swinney, “Flow Regimes in a Circular Couette System with Independently Rotating Cylinders,” Journal Fluid Mechanics, Vol. 164, No. 3, 1986, pp. 155-183.
doi:10.1017/S0022112086002513
|
[11]
|
R. J. Cornish, “Flow of Water Through Fine Clearance with Relative Motion of the Boundaries,” Proceedings of the Royal Society A, Vol. 140, No. 840, 1933, pp. 227-240. doi:10.1098/rspa.1933.0065
|
[12]
|
T. W. Steven and M. L. Richard, “Spatio-Temporal Character of Non-Wavy and Wavy Taylor-Couette Flow,” Journal Fluid Mechanics, Vol. 364, 1998, pp. 59-80.
doi:10.1017/S0022112076000098
|
[13]
|
J. A. Cole, “Taylor Vortex Instability and Annulus-Length Effects,” Journal of Fluid Mechanics, Vol. 75, No. 1, 1976, pp. 1-15. doi:10.1017/S0022112076000098
|
[14]
|
J. E. Burkhalter and E. L. Koschmieder, “Steady Supercritical Taylor Vortices after Sudden Starts,” Physics of Fluids, Vol. 17, No. 11, 1974, pp. 1929-1935.
doi:10.1063/1.1694646
|