Effects of Clarithromycin at Sub-Minimum Inhibitory Concentrations on Early ermB Gene Expression, Metabolic Activity and Growth of an erm(B)-Expressing Macrolide-Resistant Strain of Streptococcus pneumoniae
Riana Cockeran, H. C. Steel, N. Wolter, L. de Gouveia, A. von Gottberg, K. P. Klugman, A. T. Leanord, D. J. Inverarity, T. J. Mitchell, C. Feldman, R. Anderson
Division of Infection and Immunity, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow, UK.
Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital and University of the Witwatersrand, Johannesburg, South Africa.
Hubert Department of Global Health, Rollins School of Public Health, and Division of Infectious Diseases, School of Medicine, Emory University, Atlanta, USA.
Medical Research Council (MRC) Unit for Inflammation and Immunity, Department of Immunology, Faculty of Health Sciences, University of Pretoria, and Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa.
Microbiology Department, Southern General Hospital, Glasgow, UK.
Respiratory and Meningeal Pathogens Research Unit, National Institute for Communicable Diseases of the National Health Laboratory Service and Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
DOI: 10.4236/ojrd.2012.21001   PDF    HTML     4,879 Downloads   9,947 Views   Citations


Aim: To investigate the effects of exposure of a macrolide-resistant [erm (B)-expressing] strain of Streptococcus pneumoniae (strain 2507) to clarithromycin (0.5 and 5 mg/L) added at the outset and 6 hours after initiation of culture on early gene expression, energy metabolism, and growth. Methods: Bacterial growth was determined by turbidometric and colony counting procedures, energy metabolism by measurement of ATP, while analysis of gene expression was performed using reverse transcription-PCR and sequencing. Results: Addition of clarithromycin, at either concentration, at the outset of culture, caused transient suppression of growth of 10 - 12 hours duration, while delayed addition of antibiotic (during the logarithmic phase) resulted in an abrupt halt in growth followed by recovery. These inhibitory effects of clarithromycin on bacterial growth were associated with up-regulation of expression of erm(B), decreased ATP and protein synthesis, and were unaffected by inclusion of either catalase (500 and 1000 kunits/L), or competence-stimulating peptide (CSP-1, 0.5 mg/L). The inhibitory effects could, however, be overcome by pre-exposure of the bacteria to the antibiotic. Moreover, clarithromycin appeared to potentiate the antimicrobial actions of ceftriaxone, at sub-MIC concentrations, for strain 2507. Conclusions: Unlike several other common bacterial pathogens, the full expression of erm(B)-mediated macrolide resistance by the pneumococcus has a slow onset, which is associated with transient susceptibility to macrolides and inhibition of growth.

Share and Cite:

R. Cockeran, H. Steel, N. Wolter, L. Gouveia, A. Gottberg, K. Klugman, A. Leanord, D. Inverarity, T. Mitchell, C. Feldman and R. Anderson, "Effects of Clarithromycin at Sub-Minimum Inhibitory Concentrations on Early ermB Gene Expression, Metabolic Activity and Growth of an erm(B)-Expressing Macrolide-Resistant Strain of Streptococcus pneumoniae," Open Journal of Respiratory Diseases, Vol. 2 No. 1, 2012, pp. 1-8. doi: 10.4236/ojrd.2012.21001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. W. Amsden, “Pneumococcal Macrolide-Resistance— Myth or Reality?” Journal of Antimicrobial Chemotherapy, Vol. 44, No. 1, 1999, pp. 1-6. doi:10.1093/jac/44.1.1
[2] L. E. Bermudez, K. Nash, M. Petrofsky, L. S. Young and C. B. Inderlied, “Clarithromycin-Resistant Mycobacterium Avium is still Susceptible to Treatment with Clarithromycin and is Virulent in Mice,” Antimicrobial Agents in Chemotherapy, Vol. 44, No. 10, 2000, pp. 2619-2622. doi:10.1128/AAC.44.10.2619-2622.2000
[3] C. Feldman, “Clinical Relevance of Antimicrobial Resistance in the Management of Pneumococcal Community-Acquired Pneumonia,” Journal of Laboratory and Clinical Medicine, Vol. 143, No. 5, 2004, pp. 269-283. doi:10.1016/j.lab.2004.02.002
[4] Y. Fukuda, K. Yanagihara, Y. Higashiyama, Y. Miyazaki, Y. Hirakata, H. Mukae, K. Tomono, Y. Mizuta, K. Tsukamoto and S. Kohno, “Effects of Macrolides on Pneumolysin of Macrolide-Resistant Streptococcus Pneumoniae,” European Respiratory Journal, Vol. 27, No. 5, 2006, pp. 1020-1025.
[5] E. J. Giamarellos-Bourboulis, J.-C. Pechère, C. Routsi, D. Plachouras, S. Kollias, M. Raftogiannis, D. Zervakis, F. Baziaka, A. Koronaios, A. Antonopoulou, V. Markari, P. Koutoukas, E. Papadomichelakis, T. Tsaganos, A. Armaganidis, V. Koussoulas, A. Kotanidou, C. Roussos and H. Giamarellou, “Effect of Clarithromycin in Patients with Sepsis and Ventilator-Associated Pneumonia,” Clinical Infectious Diseases, Vol. 46, No. 8, 2008, pp. 1157-1164. doi:10.1086/529439
[6] M. I. Restrepo, E. M. Mortensen, G. W. Waterer, R. G. Wunderink, J. J. Coalson and A. Anzueto, “Impact of Macrolide Therapy on Mortality for Patients with Severe Sepsis Due to Pneumonia,” European Respiratory Journal, Vol. 33, No. 1, 2009, pp. 153-159. doi:10.1183/09031936.00054108
[7] T. Ichimiya, T. Yamasaki, and M. Nasu, “In-Vitro Effects of Antimicrobial Agents on Pseudomonas Aeruginosa Biofilm Formation,” Journal of Antimicrobial Chemotherapy, Vol. 34, No. 3, 1994, pp. 331-341. doi:10.1093/jac/34.3.331
[8] K. Tateda, T. J. Standiford, J. C. Pechere and K. Yamaguchi, “Regulatory Effects of Macrolides on Bacterial Virulence: Potential Role as Quorum-Sensing Inhibitors,” Current Pharmacological Research, Vol. 10, No. 25, 2004, pp. 3055-3065. doi:10.2174/1381612043383377
[9] J. M. Zuckerman, “Macrolides and Ketolides: Azithromycin, Clarithromycin, Telithromycin,” Infectious Diseases in Clinics in North America, Vol. 18, No. 3, 2004, pp. 621-649. doi:10.1016/j.idc.2004.04.010
[10] G. W. Amsden, “Anti-Inflammatory Effects of Macrolides—An Underappreciated Benefit in the Treatment of Community Acquired Respiratory Tract Infections and Chronic Inflammatory Pulmonary Conditions,” Journal of Antimicrobial Chemotherapy, Vol. 55, No. 1, 2005, pp. 10-21. doi:10.1093/jac/dkh519
[11] C. Feldman and R. Anderson, “The Cytoprotective Interactions of Antibiotics with Human Ciliated Airway Epithelium,” In: B. K. Rubin and J. Tamaoki, Ed., Antibiotics as Anti-Inflammatory and Immunomodulatory Agents, Birkhauser Verlag, Basel, 2005, pp. 49-63. doi:10.1007/3-7643-7310-5_3
[12] Y. Nalca, L. J?nsch, F. Bredenbruch, R. Geffers, J. Buer and S. Haussler, “Quorum-Sensing Antagonistic Activities of Azithromycin in Pseudomonas Aeruginosa PA01: A Global Approach,” Antimicrobial Agents in Chemotherapy, Vol. 50, No. 5, 2006, pp. 1680-1688. doi:10.1128/AAC.50.5.1680-1688.2006
[13] M. Shinkai, C. S. Park and B. K. Rubin, “Immunomodulatory Effects of Macrolide Antibiotics,” Clinical and Pulmonary Medicine, Vol. 12, No. 6, 2005, pp. 341-348. doi:10.1097/01.cpm.0000187294.53696.c0
[14] R. Anderson, H. C. Steel, R. Cockeran, A. M. Smith, A. von Gottberg, L. de Gouveia, A. Brink, K. P. Klugman, T. J. Mitchell and C. Feldman, “Clarithromycin Alone and in Combination with Ceftriaxone Inhibits the Production of Pneumolysin by Both Macrolide-Susceptible and Macrolide-Resistant Strains of Streptococcus Pneumoniae,” Journal of Antimicrobial Chemotherapy, Vol. 59, No. 2, 2007, pp. 224-229. doi:10.1093/jac/dkl479
[15] R. Anderson, H. C. Steel, R. Cockeran, A. von Gottberg, L. de Gouveia, K. P. Klugman, T. J. Mitchell and C. Feldman, “Comparison of the Effects of Macrolides, Amoxicillin, Ceftriaxone, Doxycycline, Tobramycin and Fluoroquinolones, on the Production of Pneumolysin by Streptococcus Pneumoniae in Vitro,” Journal of Antimicrobial Chemotherapy, Vol. 60, No. 5, 2007, pp. 1155-1178. doi:10.1093/jac/dkm338
[16] V. Falcó, A. Sánchez, A. Pahissa and J. Rello, “Emerging Drugs for Pneumococcal Pneumonia,” Expert Opinion in Emerging Drugs, Vol. 16, No. 3, 2011, pp. 459-477. doi:10.1517/14728214.2011.576669
[17] M. C. Enricht and B. G. Spratt, “A Multilocus Sequence Typing Scheme for Streptococcus Pneumoniae: Identification of Clones Associated with Serious Invasive Disease,” Microbiology, Vol. 144, No. 11, 1998, pp. 3049-3060. doi:10.1099/00221287-144-11-3049
[18] J. Sutcliffe, T. Grebe, A. Tait-Kamradt and L. Wondrack, “Detection of Erythromycin-Resistant Determinants by PCR,” Antimicrobial Agents in Chemotherapy, Vol. 40, No. 11, 1996, pp. 2562-2566.
[19] P. Y. Muller, H. Janocjak, A. R. Miserez and Z. Dobbie, “Processing of Gene Expression Data Generated by Quantitative Real-Time PCR,” Biotechniques, Vol. 32, No. 6, 2002, pp. 1372-1379.
[20] C. D. Pericone, K. Overweg, P. W. M. Hermans and J. N. Weiser, “Inhibitory and Bactericidal Effects of Hydrogen Peroxide Production by Streptococcus Pneumoniae on other Inhabitants of the Upper Respiratory Tract,” Infection and Immunity, Vol. 68, No. 7, 2000, pp. 3990-3997. doi:10.1128/IAI.68.7.3990-3997.2000
[21] A. Rosato, H. Vicarini and R. Leclercq, “Inducible and Constitutive Expression of Resistance in Clinical Isolates of Streptococci and Enterococci Cross-Resistant to Erythromycin and Lincomycin,” Journal of Antimicrobial Chemotherapy, Vol. 43, No. 4, 1999, pp. 559-562. doi:10.1093/jac/43.4.559
[22] N. Wolter, A. M. Smith, D. J. Farrell, J. B. Northwood, S. Douthwaite and K. P. Klugman, “Telithromycin Resistance in Streptococcus Pneumoniae is Conferred by a Deletion in the Leader Sequence of erm(B) that Increases rRNA Methylation,” Antimicrobial Agents in Chemotherapy, Vol. 52, No. 2, 2008, pp. 435-440. doi:10.1128/AAC.01074-07
[23] B. Weisblum, “Insights into Erythromycin Action from Studies of Its Activity as Inducer of Resistance,” Antimicrobial Agents in Chemotherapy, Vol. 39, No. 4, 1995, pp. 797-805.
[24] D. J. Wozniak, and R. Keyser, “Effects of Subinhibitory Concentrations of Macrolide Antibiotics on Pseudomonas Aeruginosa,” Chest, Vol. 125, No. 2, 2004, pp. 62S-69S. doi:10.1378/chest.125.2_suppl.62S
[25] W.-L. Ng, K. M. Kazmierczak, G. T. Robertson, R. Gilmour and M. E. Winkler, “Transcriptional Regulation and Signature Patterns Revealed by Microarray Analyses of Streptococcus Pneumoniae R6 Challenged with Sublethal Concentrations of Translation Inhibitors,” Journal of Bacteriology, Vol. 185, No. 1, 2003, pp. 359-370.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.