From Normal vs Skew-Normal Portfolios: FSD and SSD Rules


In this paper we study stochastic dominance rules of first and second order for univariate skew-normal random variables, the analysis being relevant in connection with the problem of portfolio choice in stock markets showing departure from the classical assumption of normality on returns. Besides that, our analysis is also relevant for markets where stocks returns are normally distributed: if standard derivatives are tradable and straddles, characterized by V-shaped pay-outs, are implementable at specific strike prices, then, portfolios including them, can exhibit exact skew-normality in their returns. We provide a set of simple conditions on the statistical parameters of the distributions which imply FSD and SSD and discuss some application of our criteria.

Share and Cite:

F. Blasi and S. Scarlatti, "From Normal vs Skew-Normal Portfolios: FSD and SSD Rules," Journal of Mathematical Finance, Vol. 2 No. 1, 2012, pp. 90-95. doi: 10.4236/jmf.2012.21011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Levy, “Stochastic Dominance,” Springer-Verlag, New York, 2005.
[2] M. W. Brandt, “Portfolio Choice Problems,” In Y. Ait- Sahalia and L. P. Hansen, Eds., Handbook of Financial Econometrics, forthcoming.
[3] W. Sharpe, G. J. Alexander and G. W. Bailey, “Investments,” Prentice-Hall, Upper Saddle River, 1998.
[4] H. Markowitz, “Portfolio Selection,” Journal of Finance, Vol. 7, No. 1, 1952, pp. 77-91. doi:10.2307/2975974
[5] G. M. de Athayde and R. G. Flores, Jr., “Finding a Maximum Skewness Portfolio: A General Solu-tion to Three Moments Portfolio Choice,” Journal of Economical Dynamics and Control, Vol. 28, No. 7, 2004, pp. 1335-1352. doi:10.1016/S0165-1889(02)00084-2
[6] L. Pastor, “Portfolio Selection and Asset Pricing Models,” Journal of Finance, Vol. 55, No. 1, 2000, pp. 179- 223. doi:10.1111/0022-1082.00204
[7] N. G. Polson, “Bayesian Portfolio Selection: An Empirical Analysis of the S & P 500 Index 1970-1996,” Journal of Business Economical Statistics, Vol. 18, No. 2, 2000, pp. 164-173. doi:10.2307/1392554
[8] H. Konno and H. Yamazaki, “Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market,” Management Science, Vol. 37, No. 5, 1991, pp. 519-531. doi:10.1287/mnsc.37.5.519
[9] H. Markowitz, P. Todd, G. Xu and Y. Yamane, “Computation of Semivariance Efficient Sets by the Critical Line Algorithm,” Annals of Operations Research, Vol. 45, No. 1, 1993, pp. 307-317. doi:10.1007/BF02282055
[10] F. J. Feiring, W. Wong, M. Poon and Y. C. Chan, “Portfolio Selection in Downside Risk Optimization Approach: Application to the Hong-Kong Stock Market,” International Journal of Systems Science, Vol. 25, No. 1-3, 1994, pp. 1921-1929. doi:10.1080/00207729408949322
[11] F. Black and R. Litterman, “Asset Allocation: Combining Investor Views with Market Equilibrium,” The Journal of Fixed Income, Vol. 1, No. 2, 1991, pp. 7-18. doi:10.3905/jfi.1991.408013
[12] A. Meucci, “The Black-Litterman Approach: Original Model and Extensions,” The Encyclopedia of Quantitative Finance, Wiley, New York, 2010.
[13] C. J. Adcock and K. Shutes, “Portfolio Selection Based on the Multivariate Skewed Normal Distribution,” In: A. Skulimowski, Ed., Financial Modelling, Progress & Business Publishers, Krakow, 2001
[14] C. Harvey, J. Liechty, M. Liechty and P. Muller, “Portfolio Selection with Higher Moments,” Quantitative Finance, Vol. 10, No. 5, 2010, pp. 469-485. doi:10.1080/14697681003756877
[15] C. J. Adcock, “Exploiting Skewness to Built an Optimal Hedge Fund with a Currency Overlay,” European Journal of Finance, Vol. 11, No. 5, 2005, pp. 445-462. doi:10.1080/13518470500039527
[16] J. F. Bacmann and S. Massi-Benedetti, “Optimal Bayesian Portfolios of Hedge Funds,” International Journal of Risk Assessment and Management, Vol. 11, No. 12, 2009, pp. 39-57. doi:10.1504/IJRAM.2009.022196
[17] T. Post, “Empirical Tests for Stochastic Dominance Efficiency,” Journal of Finance, Vol. 58, No. 5, 2003, pp. 1905-1931. doi:10.1111/1540-6261.00592
[18] A. Azzalini, “The Multivariate Skew-Normal Distribution and Related Multi-Variate Families (with Discussion),” Scandinavian Journal of Statistics, Vol. 32, 2005, pp. 159- 188. doi:10.1111/j.1467-9469.2005.00426.x
[19] R. B. Arellano and A. Azzalini, “The Centered Parame- trization for the Multivariate Skew-Normal Distribution,” Journal of Multivalent Analysis, Vol. 99, 2008, pp. 1362- 1382. doi:10.1016/j.jmva.2008.01.020
[20] M. G. Genton, “Skew-Elliptical Distributions and Their Applications: A Journey beyond Normality,” Chapman & Hall/CRC, Boca Raton, 2004. doi:10.1201/9780203492000
[21] F. S. Blasi, “Black-Litterman Model in a Skew-Normal Market,” Statistical Computation and Complex Systems 2009, Milan, 14-16 September 2009.
[22] N. Henze, “A Probabilistic Representation of the ‘Skew- Normal’ Distribution,” Scandinavion Journal of Statistics, Vol. 13, 1986, pp. 271-275.
[23] I. Buckley, D. Saunders and L. Seco, “Portfolio Optimization When Asset Returns Have the Gaussian Mixture Distribution,” European Journal of Operational Research, Vol. 185, No. 3, 2008, pp. 1434-1461. doi:10.1016/j.ejor.2005.03.080
[24] T. I. Lin, J. C. Lee and S. Y. Yen, “Finite Mixture Modelling Using the Skew-Normal Distribution,” Statistica Sinica, Vol. 17, No. 3, 2007, pp. 909-927.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.