[1]
|
Krebs, H.A. (1961) The physiological role of ketone bodies. Biochemical Journal, 80, 225-233.
|
[2]
|
Henderson, S.T. (2010) Ketone bodies as a therapeutic for Alzheimer’s disease. RSC Drug Discovery Series, 2, 275-306.
|
[3]
|
Kashiwaya, Y., Takeshima, T., Mori, N., Nakashima, K., Clarke, K. and Veech, R.L. (2000) D-β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 97, 5440-5444. doi:10.1073/pnas.97.10.5440
|
[4]
|
Cornille, E., Abou-Hamdan, M., Khrestchatisky, M., Henderson, S.T., Nieoullon, A., de Reggi, M. and Gharib, B. (2010) Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury. BMC Neuroscience, 11, 51. doi:10.1186/1471-2202-11-51
|
[5]
|
Hasebe, N., Abe, K., Sugiyama, E., Hosoi, R. and Inoue, O. (2010) Anticonvulsant effects of methyl ethyl ketone and diethyl ketone in several types of mouse seizure models. European Journal of Pharmacology, 642, 66-71. doi:10.1016/j.ejphar.2010.05.036
|
[6]
|
Hauptman, J.S. (2010) From the bench to the bedside: Breaking down the blood-brain barrier, decoding the habenula, understanding hand choice, and the role of ketone bodies in epilepsy. Surgical Neurology International, 1, 86. doi:10.4103/2152-7806.74143
|
[7]
|
Sawai, M., Yashiro, M., Nishiguchi, Y., Ohira, M. and Hirakawa, K. (2004) Growth-inhibitory effects of the ketone body, Monoacetoacetin, on human gastric cancer cells with succinyl-CoA: 3-oxoacid CoA-transferase (SCOT) deficiency. Anticancer Research, 24, 2213-2217.
|
[8]
|
Novak, M. and Loudon, G.M. (1977) The pKa of acetophenone in aqueous solution. Journal of Organic Chemistry, 42, 2494-2498. doi:10.1021/jo00434a032
|
[9]
|
Chiang, Y., Kresge, A.J., Tang, Y.S. and Wirz, J. (1984) The pKa and keto-enol equilibrium constant of acetone in aqueous solution. Journal of the American Chemical Society, 106, 460-462. doi:10.1021/ja00314a055
|
[10]
|
Chiang, Y., Kresge, A.J. and Wirz, J. (1984) Flash-photolytic generation of acetophenone enol. The ketoenol equilibrium constant and pKa of acetophenone in aqueous solution. Journal of the American Chemical Society, 106, 6392-6395. doi:10.1021/ja00333a049
|
[11]
|
Pollack, R.M., Mack, J.P.G. and Eldin, S. (1987) Direct observation of a dienolate intermediate in the base-catalyzed isomerization of 5-androstene-3,17-dione to 4-and- rostene-3,17-dione. Journal of the American Chemical Society, 109, 5048-5050. doi:10.1021/ja00250a061
|
[12]
|
Bordwell, F.G. (1988) Equilibrium acidities in dimethyl sulfoxide solution. Accounts of Chemical Research, 21, 456-463. doi:10.1021/ar00156a004
|
[13]
|
Bordwell, F.G. and Bausch, M.J. (1986) Radical cation acidities in dimethyl sulfoxide solution. Journal of the American Chemical Society, 108, 2473-2474.
doi:10.1021/ja00269a071
|
[14]
|
Bordwell, F.G., Cheng, J.P., et al. (1988) Homolytic bond dissociation energies in solution from equilibrium acidity and electrochemical data. Journal of the American Chemical Society, 110, 1229-1231.
doi:10.1021/ja00212a035
|
[15]
|
Lowry, T.H. and Richardson, K.S. (1981) Mechanism and theory in organic chemistry. 2nd Edition, Harper and Row, New York.
|
[16]
|
Alnajjar, M.S., Zhang, X.-M., Gleicher, G.J., Truksa, S.V. and Franz, J.A. (2002) Equilibrium acidities and homolytic bond dissociation energies of acidic C-H bonds in α-arylacetophenones and related compounds. Journal of Organic Chemistry, 67, 9016-9022.
doi:10.1021/jo020275s
|
[17]
|
Yu, H.-Y., Kühne, R., Ebert, R.-U. and Schüürman, G. (2010) Comparative analysis of QSAR models for predicting pKa of organic oxygen acids and nitrogen bases from molecular structure. Journal of Chemical Information and Modeling, 50, 1949-1960.
doi:10.1021/ci100306k
|
[18]
|
Eckert, F. and Klamt, A. (2006) Accurate prediction of basicity in aqueous solution with COSMO-RS. Journal of Computational Chemistry, 27, 11-19. doi:1002/jcc.20309
|
[19]
|
Klamt, A., Eckert, F., Diedenhofen, M. and Beck, M.E. (2003) First principles calculations of aqueous pKa values for organic and inorganic acids using COSMO-RS reveal an inconsistency in the slope of the pKa scale. Journal of Physical Chemistry A, 107, 9380-9386.
doi:10.1021/jp034688o
|
[20]
|
Liptak, M.D. and Shields, G.C. (2001) Accurate pKa Calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. Journal of the American Chemical Society, 123, 7314-7319. doi:10.1021/ja010534f
|
[21]
|
Schüürman, G., Cossi, M., Barone, V. and Tomasi, J. (1998) Prediction of the pKa of carboxylic acids using the ab initio continuum-solvation model PCM-UAHF. Journal of Physical Chemistry A, 102, 6706-6712.
doi:10.1021/jp981922f
|
[22]
|
Schüürman, G. (1998) Quantum chemical analysis of the energy of proton transfer from phenol and chlorophenols to H2O in the gas phase and in aqueous solution. Journal of Chemical Physics, 109, 9523-9528.
doi:10.1063/1.477614
|
[23]
|
Schüürman, G. (1996) Modelling pKa of carboxylic acids and chlorinated phenols. Quantitative Structure-Activity Relationships, 15, 121-132.
doi:10.1002/qsar.19960150206
|
[24]
|
Bordwell, F.G. and Harrelson, J.A. Jr. (1990) Acidities and homolytic bond dissociation energies of the αC-H bonds in ketones in DMSO. Canadian Journal of Chemistry, 68, 1714-1718. doi.org/10.1139/v90-266
|
[25]
|
Bordwell, F.G., Harrelson, J.A. Jr. and Zhang, X.-M. (1991) Homolytic bond dissociation energies of acidic carbon-hydrogen bonds activated by one or two electron acceptors. Journal of Organic Chemistry, 56, 4448-4450. doi.org/10.1021/jo00014a022
|
[26]
|
SYBYL 8.1, Tripos International, St. Louis, USA.
|
[27]
|
Kier, L. and Hall, L. (1999) Molecular structure description: The electrotopological state. Academic Press, New York.
|
[28]
|
Kier, L. and Hall, L. (1986) Molecular connectivity in structure-activity analysis. Research Studies Press, Chichester.
|
[29]
|
Liao, S.-Y., Xu, L.-C., Qian, L. and Zheng, K.-Ch. (2007) QSAR and action mechanism of troxacitabine prodrugs with antitumor activity. Journal of Theoretical & Computational Chemistry, 6, 947-958.
doi:10.1142/S0219633607003428
|