Analysis of Pseudoreplicants to Evaluate Natural Regeneration after Applying Prescribed Burns in a Temperate Forest of Mexico
José Germán Flore Garnica
DOI: 10.4236/ojf.2012.21002   PDF    HTML     5,235 Downloads   8,568 Views   Citations

Abstract

Although fire is one of the most important disturbing factors of forest in Mexico, little it is known on the effects of fire on the particular Mexican forest ecosystems. This is remarked for the fact that the effects of fires on vegetation vary among different types of forests. This lack of knowledge has constrained the use of fire, as a silvicultural tool. Therefore, the purpose of this project was to evaluate the effects of fire on regeneration, under burns. This work was carried out in a pine forest stand at Tapalpa Saw in Jalisco State, Mexico, dominated by Pinus michoacana and Pinus oocarpa. The study evaluated the effects of two techniques of prescribed burning: 1) backing, and 2) head fire. The sample plots were burned on 25 and 26 March 1991, before the rain season. One month before and 2 years after burning several measurements were made in order to evaluate the effect of fire on regeneration. Due to the limitations to work with “real” replicates (for treatments an control), original sample units (20 × 30 m) were divided into 5 × 5 m smaller sample units, which were considered as pseudoreplicants. Therefore, such analysis did not avoid introducing systematic error (bias) and minimize random error. Nevertheless, the variability within the pseudoreplicants was considerable in order to assume certain significance of the resulting estimations. Therefore, despite that this was a nonreplicated study; the results suggest strong ecological evidence that prescribed fire enhance natural regeneration of Pinus michoacana and Pinus oocarpa. In general, it is concluded that prescribed burning could be a valuable forest management tool in regions with similar conditions to the study area, in order to improve regeneration. However, further research is needed before prescribed fires can be applied with confidence in many Mexican forest conditions.

Share and Cite:

Garnica, J. (2012). Analysis of Pseudoreplicants to Evaluate Natural Regeneration after Applying Prescribed Burns in a Temperate Forest of Mexico. Open Journal of Forestry, 2, 9-16. doi: 10.4236/ojf.2012.21002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Arno, S. F. (1980). Forest fire history in the Northern Rockies. Journal of Forestry, 78, 460-466.
[2] Beadle, N. C. W. (1940). Soil temperatures during forest fires and their effect on the survival of vegetation. Journal of Ecology, 28, 180-192. doi:10.2307/2256168
[3] Bell, D. T., Plummer, J. A., & Taylor, S. K. (1993). Seed germination ecology in Southwestern West Australia. The Botanical Review, 59, 24-73. doi:10.1007/BF02856612
[4] Benavides, S. J. D. (1987). Estimación de la calidad de sitio mediante indices de sitio del Pinus michoacana cornuta Martínez y Pinus oocarpa Schiede, para el A.D.F. Tapalpa, Estado de Jalisco. Bachellor Thesis, Chapingo: División de Ciencias Forestales. U.A. Chapingo.
[5] Blackmar, W. H. (1971). Equilibrium moisture content of common fire fuels found in southeastern forests. Forest Service Research Paper, No. SE-74. Southwestern Forest Experiment Station. USA.
[6] Bradstock, R. A., & Myerscough, P. J. (1981). Fire effects on seed release and the emergence and establishment of seedlings in Banksia ericifolia L.f. Australian Journal of Botany, 29, 521-531. doi:10.1071/BT9810521
[7] Cain, M. D. (1985). Prescribed winter burns can reduce the growth of nine-year-old Loblolly pine. Research Note SO-312. Southern Forest Experimental Station. USDA, Forest Service.
[8] Chandler, C., Cheney, P., Thomas, P., Trabaud, L., & Williams, D. (1983a). Fire in the forestry. Forest fire behaviour and effects (p. 450). New York: John Wiley & Sons, Inc.
[9] DeBano, L. F. (1976). Nutrients lost in debris and runoff water from a burned chaparral watershed. Conference Proceedings of the Federal Inter-Agency Sediment, 3, 13-27.
[10] Davis, K. P. (1959). Forest fire control and use. New York: McGraw-Hill.
[11] Enright, N. J., & Lamont, B. B. (1989). Seed banks, fire season, safe sites and seedling recruitment in five co-occurring Banksia species. Journal of Ecology, 77, 1111-1112. doi:10.2307/2260826
[12] Fuller, M. (1991). Forest fires. An introduction to wildland fire behaviour, management, fire fighting and prevention. New York: John Wiley & Sons.
[13] Givnish, T. J. (1981). Serotiny, geography, and fire in the pine barrens of New Jersey. Evolution, 35, 101-123. doi:10.2307/2407945
[14] Haywood, J. (2007). Influence of herbicides and felling, fertilization, and prescribed fire on longleaf pine establishment and growth through six growing seasons. New Forests, 33, 257-279. doi:10.1007/s11056-006-9026-3
[15] Heffner, R. A., Butler IV, M. J., & Reilly, C. K. (1996). Pseudoreplication revisited. Ecology, 77, 2558-2562. doi:10.2307/2265754
[16] Hodgkinson, K. C., & Oxley, R. E. (1990). Influence of fire and edaphic factors on germination of the arid zone shrubs Acacia aneura, Cassia nemophila and Dodonaea viscosa. Australian Journal of Botany, 38, 269-279. doi:10.1071/BT9900269
[17] Houle, G., & Payatte, S. (1991). Seed dynamics of Abies balsamea and Acer saccharum in a deciduous forest of Northeastern North America. American Journal of Botany, 78, 895-905. doi:10.2307/2445168
[18] Hudson, J., & Salazar, M. (1981). Prescribed fires in the pine forests of Honduras. Miscellaneous Serie No. 1. Siguatepeque: National School of Forest Sciences.
[19] Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187-211. doi:10.2307/1942661
[20] Jenkins, M. A., Klein, R. N., & McDaniel, V. L. (2011). Yellow pine regeneration as a function of fire severity and post-burn stand structure in the southern Appalachian Mountains. Forest Ecology and Management, 22, 681-691. doi:10.1016/j.foreco.2011.05.001
[21] Johnston, W. F. (1971). Broadcast burning slash favors black spruce reproduction on organic soil in Minnesota. The Forest Chronicle, 47, 33-35.
[22] Land, A. D., & Rieske, L. K. (2006). Interactions among prescribed fire, herbivore pressure and shortleaf pine (Pinus echinata) regeneration following southern pine beetle (Dendroctonus frontalis) mortality Original. Forest Ecology and Management, 235, 260-269. doi:10.1016/j.foreco.2006.08.336
[23] Luke, R. H., & McArthur, A. G. (1978). Bushfires in Australia. Department of Primary Industry Forestry and Timber Bureau. Commonwealth of Australia.
[24] Malanson, G. P., & O’Leary, J. F. (1982). Post-fire regeneration of californian coastal sage shrubs. Oecologia, 53, 355-358. doi:10.1007/BF00389013
[25] Martínez, M. A., Flores, G. J. G., & de D. Benavides S. J., (1990). índices de riesgo de incendio en la sierra de Tapalpa, Estado de Jalisco. Revista Ciencia Forestal en México, 15, 3-34.
[26] McNabb, K. L. (2001). Prescribed burning in Alabama forests. Alabama: Alabama A & M and Alburn Universities.
[27] Millar, R. B., & Anderson, M. J. (2004). Remedies for pseudoreplication. Fisheries Research, 70, 397-407. doi:10.1016/j.fishres.2004.08.016
[28] Moravec, J. (1990). Regeneration of N. W. African Pinus halepensis forests following fire. Vegetatio, 87, 29-36. doi:10.1007/BF00045652
[29] Ne’eman, G., Lahav, H., & Izhaki, I. (1992). Spatial pattern of seedlings 1 year after fire in a Mediterranean pine forest. Oecologia, 91, 365-370. doi:10.1007/BF00317625
[30] Nesmith, J. C. B., Caprio, A. C., Pfaff, A. H., McGinnis, T. W., & Keeley, J. E. (2011). A comparison of effects from prescribed fires and wildfires for resource objectives in Sequoia and Kings Canyon National Parks. Forest Ecology and Management, 261, 1275-1282. doi:10.1016/j.foreco.2011.01.006
[31] Norusis, M. P. (1993). SPSS for Windows. Base System. Chicago: SPSS Inc.
[32] Pase, C. P., & Lindenmuth Jr., A. W. (1971). Effects of prescribed fire. Journal of Forestry, 69, 800-805.
[33] Perera, A. (1989). Post-fire recovery of 10-year-old Pinus caribaea var. hondurensis in a hilly watershed in Sri Lanka. Forest Ecology and Management, 28, 309-313. doi:10.1016/0378-1127(89)90010-8
[34] Ramade, F. (1984). Ecology of natural resources. New York: John Wiley & Sons.
[35] Reich, P. B., & Abrams, M. D. (1990). Fire affects ecophysiology and community dynamics of Central Wisconsin oak forest regeneration. Ecology, 71, 2179-2190. doi:10.2307/1938631
[36] Savill, P. S., & Evans, J. (1986). Plantation silviculture in temperate regions. Oxford: Claredon Press.
[37] Simard, A. J., & Main, W. A. (1982). Comparing methods of predicting jack pine slash moisture. Canadian Journal of Forest Research, 12, 793-802. doi:10.1139/x82-119
[38] Sirois, L., & Payette, S. (1991). Reduced postfire tree regeneration along a boreal forest-forest-tundra transect in Northern Quebec. Ecology, 72, 619-627. doi:10.2307/2937202
[39] Smith, D. A. (1986). The practice of silviculture (8th ed.). New York: John Wiley & Sons.
[40] Snedecor, G. W., & Cochran, W. A. (1976). Statistical methods (6th ed.). Ames, Iowa: The Iowa State University Press.
[41] St-Pierre, H., Gagnon, R., & Bellefleur, P. (1992). Post-fire regeneration of black spruce (Picea mariana) and Jack pine (Pinus banksiana) in the boreal forest, Quebec. Canadian Journal of Forest Research, 22, 474-481. doi:10.1139/x92-062
[42] Steel, R. G. D., & Torrie, J. H. (1960). Principles and procedures of statistics. New York: McGraw-Hill Book Company, Inc.
[43] Teich, A. H. (1970). Cone serotiny and inbreeding in natural population of Pinus banksiana and Pinus contorta. Canadian Journal of Botany, 48, 1805-1809. doi:10.1139/b70-265
[44] Toledo, M. R. (1988). Levels of forest fire risk. Michoacan: Regional Center for Reaserches in Forestry, Agricultural, and Animal Husbandry.
[45] Tweed, W. (1987). Born of fire. National Parks, 61, 22.
[46] Van Lear, D. H., & Waldrop, T. A. (1991). Prescribed burning for regeneration. In M. L. Duryea, & P. M. Dougherty (Eds.), Klumer Forest regeneration manual (pp. 235-249). Netherlands: Academic Publishers. doi:10.1007/978-94-011-3800-0_12
[47] Vega, J. A., Fernández, C., Pérez, G. P., & Fonturbel, T. (2008). The influence of fire severity, seronity, and post-fire management on Pinus pinaster Ait. Recruitment I three burnt areas in Galicia (NW Spain). Forest Ecology and Management, 256, 1596-1603. doi:10.1016/j.foreco.2008.07.005
[48] Vose, J. M., & White, A. S. (1987). Processes of understory seedling recruitment 1 year after prescribed fire in an Arizona ponderosa pine community. Canadian Journal of Botany, 65, 2280-2290. doi:10.1139/b87-311
[49] Wade, D. D. (1989). A guide for prescribed fire in southern forests. Technical Publication R8-TP 11. Southern Region, Forest Service, USDA.
[50] Wells, C. G., Campbell, R. E., de Bano, L. F., Lewis, C. E., Fredriksen, R. L, Franklin, E. C., Froelich, R. C., & Dunn, P. H. (1979). Effects of fire on soil. General Technical Report WO-7. Forest Service, USDA.
[51] Whipple, S. A. (1978). The relationship of buried, germinating seeds to vegetation in an old-growth Colorado supalpine forest. Canadian Journal of Botany, 56, 1505-1509. doi:10.1139/b78-176
[52] Whittaker, E. (1961). Temperatures in heath fires. Journal of Ecology, 49, 709-715. doi:10.2307/2257233
[53] William W., Hargrove, W. W., & Pickering, J. (1992). Pseudoreplication: A sine qua non for regional ecology. Landscape Ecology, 6, 251-258. doi:10.1007/BF00129703

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.