On the Nature of Dark Matter and Dark Energy
Baurov Yury Alexeevich, Malov Igor Fedorovich
DOI: 10.4236/jmp.2010.11003   PDF    HTML     5,681 Downloads   13,822 Views   Citations


It is known that all candidates in dark matter (DM) particles (neutrinos, axions, supersymmetric particles etc.) can not explain the basic properties of DM. The same can be said on the proposed candidates in dark energy (DE) (for example, quintessence). In the paper it is shown that some problems connected with DM and DE can be solved in the framework of the byuon theory. Basic axioms and some conclusions of this theory are discussed. The existence of fundamental unobserved elements in nature, byuons is declared. Physical space in our Universe is the quantum medium of special objects 4b, formed in four-contact interactions of byuons (m4b c2 ≈ 33eV). These objects determine the average density of substance (DM) in the Universe ~10-29 g cm-3. The byuon theory predicts a new interaction of natural objects with physical vacuum. This new force can cause the observed acceleration of our Universe. The estimations show that it is higher than the gravitational force at distances of order to 1026-1028 cm. Some other consequences of the byuon theory are considered.

Share and Cite:

B. Alexeevich and M. Fedorovich, "On the Nature of Dark Matter and Dark Energy," Journal of Modern Physics, Vol. 1 No. 1, 2010, pp. 17-32. doi: 10.4236/jmp.2010.11003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. J. Rees, “Dark Matter: Introduction,” Astro-Physics, Vol. 361, 2003, pp. 2427-2434.
[2] E. A. Baltz, “Dark Matter Candidates,” Astro-Physics, Vol. 1, 8 December 2004.
[3] V. Rubin, W. K. Ford and N. Thonnard, Astrophysical Journal, Vol. 238, 1980, p. 471.
[4] J. Garcia-Boldino, “Cosmology and Astrophysics,” As-tro-Physics, Vol. 2, 2005, p. 139.
[5] R. D. Peccei and H. R. Quinn, “CP Conservation in the Presence of Pseudoparticles,” Physical Review Letters, Vol. 38, 1977, p. 1440.
[6] M. S. Turner, “Windows on the Axion,” Physics Reports, Vol. 197, 1990, pp. 67.
[7] P. Sikivie, “Experimental Tests of the ‘Invisible’ Axion,” Physical Review Letters, Vol. 51, 1983, p. 1415.
[8] S. J. Asztalos, et al. “Experimental Constraints on the Axion Dark Matter Halo Density,” Astrophysical Journal, Vol. 571, 2002, p. L27.
[9] H. Pagels and J. R. Primack, “Supersymmetry, Cosmol-ogy, and New Physics at Teraelectronvolt Energies,” Physical Review Letters, Vol. 48, 1982, p. 223.
[10] G. Jungman, M. Kamionkowski and K. Griest, “Super- symmetric Dark Matter,” Physics Reports, Vol. 267, 1996, p. 195.
[11] L. Covi, J. E. Kim and L. Roszkowski, “Axinos as Cold Dark Matter,” Physical Review Letters, Vol. 82, 1999, p. 4180.
[12] A. Kusenko and P. J. Steinhardt, “Q-Ball Candidates for Self-Interacting Dark Matter,” Physical Review Letters, Vol. 87, 2001, p. 141301.
[13] K. R. Dienes, E. Dudas and T. Gheghetta, “Grand Unifi-cation at Intermediate Mass Scales through Extra Dimen-sions,” Nuclear Physics B, Vol. 537, 1999, p. 47.
[14] J. A. R. Cembranos, A. Dobado and A. L. Maroto, “Bra- non Dark Matter,” High Energy Physics-Phenomenology, p. 0406076.
[15] Z. Berezhiani, D. Comelli and F. L. Villante, “The Early Mirror Universe: Inflation, Baryogenesis, Nucleosynthe- sis and Dark Matter,” Physics Letters B, Vol. 503, 2001, p. 362.
[16] D. J. H. Chang, E. W. Kolb and A. Riotto, “Superheavy Dark Matter,” Physical Review D, Vol. 59, 1999, p. b3501.
[17] K. Jedamzik, “Primordial Black Hole Formation during the QCD Epoch,” Physical Review D, Vol. 55, 1997, p. 5871.
[18] M. Trodden and S. M. Carrol, “TASI Lectures: Intro- duction to Cosmology,” Astro-Physics/0401547.
[19] P. J. E. Peebles and B. Ratra, “The Cosmological Con-stant and Dark Energy,” Reviews of Modern Physics, Vol. 75, 2003, p. 559.
[20] Y. A. Baurov, “Structure of Physical Space and New Method of Obtaining Energy (Theory, Experiment, App- lications),” Moscow, Krechet, in Russian, 1998.
[21] Y. A. Baurov, “On the Structure of Physical Vacuum and a New Interaction in Nature (Theory, Experiment and Applications),” Nova Science, NY, 2000.
[22] Y. A. Baurov, “Global Anisotropy of Physical Space (Experimental and Theoretical Basis),” Nova Science, 2004.
[23] Y. A. Baurov, “Structure of Physical Space and Nature of Electromagnetic Field,” in Coll. Work. PHOTON: Old Problems in Light of New Ideas, Nova Science, New York, 2000, pp. 259-269.
[24] Y. A. Baurov, “Structure of Physical Space and New Interaction in Nature (Theory and Experiment),” Pro-ceedings of conference Lorentz group, CPT and Neutri-nos, World Scientific, 2000, pp. 342-352.
[25] Y. A. Baurov, “Structure of Physical Space and Nature of de Broglie Waves (Theory and Experiment),” Journal Annales de Fondation de Broglie, Contemporary Electro- dynamics, Vol. 27, No. 3, 2002, pp. 443-461.
[26] Y. A. Baurov, Y. N. Babaev and V. K. Ablekov, Doklady Akademii Nauk, Vol. 259, 1981, p. 1080.
[27] Y. N. Babaev and Y. A. Baurov, “Preprint P-0362 of Institute for Nuclear Research of Russian Academy of Sciences (INR RAS),” Moscow, 1984 (in Russian).
[28] V. V. Kolpachev and C. A. Nikolaev, “Preprint N 1695 of Institute for Space Researches of Russian Academy of Sciences (ISR RAS),” Moscow, in Russian, 1990.
[29] C. E. Shannon, Bell Labs Technical Journal, Vol. 27, 1948, pp. 379,623.
[30] A. I. Kholmogorov, “Information Theory and Theory of Algorithms,” Moscow, Nauka, in Russian, 1987.
[31] Y. A. Baurov, I. B. Timofeev, V. A. Chernikov, S. F. Chalkin and A. A. Konradov, “Experimental Investiga- tion of the Distribution of Pulsed-Plasma-Generator at its Various Spatial Orientation and Global Anisotropy of Space,” Physics Letters A, Vol. 311, 2003, p. 512.
[32] Y. A. Baurov, “Space Magnetic Anisotropy and a New Interaction in Nature,” Physics Letters A, Vol. 181, 1993, p. 283.
[33] Y. A. Baurov, E. Y. Klimenko and S. I. Novikov, “Ex- perimental Observation of Space Magnetic Anisotropy”, Doklady Akademy Nauk SSSR (DAN), Vol. 315, 1990, p. 1116.
[34] Y. A. Baurov, E. Y. Klimenko and S. I. Novikov, “Ex-perimental Observation of Space Magnetic Anisotropy,” Physics Letters A, Vol. 162, 1992, p. 32.
[35] Y. A. Baurov and P. M. Ryabov, “Experimental Investi- gations of Magnetic Anisotropy Using Quartz Piezore- sonance Balances,” Doklady Akademy Nauk SSSR (DAN), Vol. 326, 1992, p. 73.
[36] Y. A. Baurov, A. A. Konradov, E. A. Kuznetsov, V. F. Kushniruk, Y. B. Ryabov, A. P. Senkevich, Y. G. Sobolev and S. Zadorozsny, “Experimental Investigations of Changes in -Decay Rate of 60Co and 137Cs,” Modern Physics Letters A, Vol. 16, No. 32, 2001, p. 2089.
[37] Y. A. Baurov and A. V. Kopaev, “Experimental Investi- gation of Signals of a New Nature with the Aid of Two High Precision Stationary Quartz Gravimeters,” Had-ronic Journal, Vol. 25, 2002, p. 697.
[38] Y. A. Baurov, G. A. Beda, I. P. Danilenko and V. P. Ig-natko, “Experimental Investigation of New Method of Energy Generation in Plasma Devices Caused by Exis-tence of Physical Space Global Anisotropy,” Hadronic Journal Supplement, Vo. 15, 2000, pp. 195-210.
[39] R. A. Alpher, M. Bethe and G. Gamov, Physical Review, Vol. 70, 1946, p. 572; Vol. 73, 1948, p. 803.
[40] A. D. Linde, Uspehi Fizicheskih Nauk, Vol. 144, 1984, p. 177.
[41] G. Y. Bogoslovsky, “Theory of Locally Anisotropic Spa- ce-Time,” edited by Moscow State University, in Russian, 1992.
[42] K. Rund, “Differential Geometry of Finsler’s Spaces,” Moscow, Nauka, 1981.
[43] “Time Structures in Natural Sciences: On the Road to Right Understanding of Time Phenomenon,” Part 1, In-terdisciplinary Research, edited By Moscow State Uni-versity, in Russian, 1996.
[44] N. N. Bogolyubov and D. V. Shirkov, “Introduction to the Theory of Quantized Fields,” Moscow, Nauka, in Russian, 1976.
[45] L. B. Okun’, “Leptons and Quarks,” Nauka, Moscow, in Russian, 1990.
[46] J. H. Shwartz, “Superstrings,” World Scientific, Singa- pore, 1985.
[47] L. D. Landau and E. M. Lifshitz, “Theory of the Field,” Nauka, Moscow, in Russian, 1967.
[48] H. Weyl, “Raum, Zeit Material Vierte Erweiterte Auf- lage,” Springer, Berlin, 1921.
[49] H. Weyl, “Raum, Zeit, Materie, FüNfte, Umgearbeitete Auflaqe,” Springer, Berlin 1923.
[50] P. A. M. Dirac, Proceedings of the Royal Society, London, 1973, Vol. A333, p. 419.
[51] Y. A. Baurov, A. A. Shpitalnaya and I. F. Malov, “Global Anisotropy of Physical Space and Velocities of Pulsars,” International Journal of Pure & applied Physics, Vol. 1, No. 1, 2005, pp. 71-82.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.